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Summary. In this paper we explore the use of weak B-trees to represent 
sorted lists. In weak B-trees each node has at least a and at most b sons 
where 2 a < b .  We analyse the worst case cost of sequences of insertions and 
deletions in weak B-trees. This leads to a new data structure (level-linked 
weak B-trees) for representing sorted lists when the access pattern exhibits 
a (time-varying) locality of reference. Our structure is substantially simpler 
than the one proposed in [7], yet it has many  of its properties. Our 
structure is as simple as the one proposed in [5], but our structure can 
treat arbitrary sequences of insertions and deletions whilst theirs can only 
treat non-interacting insertions and deletions. We also show that weak B- 
trees support  concurrent operations in an efficient way. 

1. Introduction 

Balanced trees allow the execution of the three basic dictionary operations 
Search, Insert and Delete in logarithmic time. 

In conventional applications searches always start at the root of the tree 
and then proceed towards the leaves. Hence, they take time O(logn), where n 
is the current size of the file. Insertions and Deletions are always preceeded by 
a search. They consist of adding or pruning a leaf and subsequent rebalancing. 
Rebalancing is restricted to the path from the new or deleted leaf to the root 
and calls for local changes of the tree in some nodes of that path. Of  course, 
" some"  is always O(logn) and hence it "only"  influences the constants in the 
insertion and deletion times. In a parallel environment, i.e., several processes 
are operating on the same tree, it also influences the degree of parallelism. 

Recently, there has been a growing interest in less conventional appli- 
cations of balanced trees. In these applications searches start at the leaves, 
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proceed towards the root then turn around and proceed downwards again. 
Thus, insertion and deletion costs are not naturally dominated by the cost of 
the searches. This observation has led to a number of new data structures [7, 
12] as well as to a more detailed analysis of existing data structures [4, 5, 13]. 

In this paper we explore the use of weak B-trees for the representation of 
linear lists. In weak B-trees all leaves have the same depth and every interior 
node has at least a and at most b sons for some constants a,b with b>~2a. In 
ordinary B-trees [2] we have b - - 2 a - 1 .  We analyse the cost of sequences of 
insertions and deletions into weak B-trees and show that this cost is linear in 
the length of the sequence when the initial tree is empty, and sublinear when 
b-2a  is sufficiently large. In the case of an arbitrary starting tree we derive a 
bound in terms of the positions of the insertions and deletions. 

We also show that the number  of insertions/deletions which require k 
rebalancing operations (i.e., the last k nodes of the path to the root are effected 
by local changes) decreases exponentially with k. We conclude that weak B- 
trees support a high degree of concurrency even in the presence of insertions 
and deletions. 

In Sect. 4 we go on to show that weak B-trees are well suited to represent 
sorted linear lists. Level-linked weak B-trees allow very efficient searches by 
the use of fingers. A finger is a pointer to a leaf of the tree. Search times are 
logarithmic in the distance from the finger. Fingers can be established and 
moved in constant time, and insertions and deletions take constant time on 
the average (averaged over a sequence of insertions and deletions). Hence, the 
cost of the searches dominates the total cost. 

In Sect. 5 we use level-linked weak B-trees in order to describe optimal 
realizations of many set operations; in particular the task of updating a master 
file against a file of updates can be performed optimally. 

Our structure (almost) combines the advantages of the structures proposed 
in [-7] and [5] and avoids their disadvantages. It is much simpler than the 
structure of [7] and yet has the same behavior for sequences of operations. 
More precisely, in [7] the cost of every single insertion and deletion is 
dominated by the preceeding search; in our case, this is only true for a 
sequence of operations. However, finger creations are much harder and the 
constants in the O-expressions for the running times are much larger in their 
case. Next we compare our structure with the one proposed in [5]. Our 
structure is as simple yet it does a lot more. We can treat arbitrary sequences 
of insertions and deletions whilst [5] can only manage sequences of non- 
interacting insertions and deletions. 

2. Sequence of Operation Analysis of Weak B-trees 

B-trees were introduced by [2]. In B-trees all leaves have the same depth and 
each internal node has at least a and at most 2 a - 1  sons where a is some 
constant, the order of the tree. In weak B-trees we allow for a wider range of 
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arities of nodes. In the sequel, node always stands for interior node, i.e., leaves 
are not called nodes. 

Definition. p(v) denotes the number of sons of node v. When T is a tree, f T[ 
denotes the number of leaves of T. 

Definition. Let a and b integers with a ~ 2  and 2 a - 1  <=b. 

A tree T is an (a, b)-tree if 

a) all leaves of T have the same depth 
b) all nodes v of T satisfy p(v) <= b 
c) all nodes v except the root satisfy p(v)>= a 
d) the root r of T satisfies p(r)>min(2,  [TI). 

The class of order a B-trees is identical to the class of (a, 2a-1)- t rees .  For 
b>=2a we will refer to the class of (a,b)-trees as a class of weak B-trees. The 
hysteresis of (a, b)-trees is defined to be [b/2]-a,  following [-10]. In our exam- 
ples we will always use (2,4)-trees. (2,4)-trees have been considered in [1] as 
"symmetric binary B-trees", and in [6] as " 2 - 3 - 4  trees". 

Lemma 1. Let T be an (a, b)-tree of height h > 1 with iT[ leaves. Then 

2. a h- 1 < max(2, ITI) <b  h 

Proof Obvious. 

We infer from Lemma 1 that the depth of (a,b)-trees is logarithmic in the 
number of leaves. 

Insertion and deletion into (a,b)-trees is quite similar to the corresponding 
operations in B-trees. An insertion means the addition of a new leaf at a given 
position in the tree, a deletion means the pruning of an existing leaf at a given 
position in the tree. Note that we treat the searches for these positions 
seperately in what follows, i.e., for the moment we concentrate at the rebalanc- 
ing aspect of (a, b)-trees. 

Definition. (T, v) is a partially rebalanced (a, b)-tree, where v is a node of T and 
r is the root of T, if 

a) a - l < p ( v ) < b + l  if v 4 r  
min(1, [Tl)<p(v)<b+ l if v=r 

b) a<p(w)<b for all w~:v,r 
c) 2<p(r)<b if r4:v. 

Insertion. An insertion is accomplished by a sequence of node expansions and 
node splittings, terminating in a balanced (a, b)-tree. Let w be any leaf of T and 
suppose that a new leaf is to be inserted to the right (left) of w. Let v be the 
father of w. 

1) Expand v, i.e., make the new leaf an additional son of v. The expansion 
of v increases p(v) by i. If p(v) is still <b  then rebalancing is complete. 
Otherwise v needs to be split. Since splitting may propagate we fomulate it as 
a loop. 
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2) while p(v) = b + 1 
do if v is the root of T 

then let x be a new node and make v the only son of x 
else let x be the father of v 
fi; 
let v' be a new node; 
expand x; i.e., make v' an additional son of x immediately 
to the right of v; 
split v, i.e., take the rightmost [(b + 1)/2] sons away from v 
and make them sons of v'; 
O~'-X; 

od; 

Fig. 1 shows the insertion of a leaf into a (2, 4)-tree. 
An insertion of a new leaf requires r +  1 expansions and r node splittings 

for some integer r>0 .  It can be accomplished in time O(1 +r). 

Deletion. A deletion is accomplished by a sequence of node shrinkings and 
node fusings possibly followed by one node sharing. Deletion has two parame- 
ters, t and s, described afterwards. 

Let w be any leaf of T (the leaf to be deleted) and let v be the father of w. 

1) Shrink v by pruning w. This decreases p(v) by 1. If p(v) is still > a or the 
height of v is 1 then rebalancing is completed. (Note that we represent the 
empty tree by a single node of arity 0). Otherwise, v needs to be rebalanced by 
either fusing or sharing. Let y be any brother of v. 
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Fig. 2. Deletion from (2, 4)-tree 
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while (p(v)=a- 1 and p(y)<=a+t) 
do let x be the father of v; 

fuse v and y, i.e., make all sons of y sons of v and delete y; 
co this will simultaneously shrink x, i.e., decrease its arity by one; 

let y be a brother of x; 
if x does not have a brother 
then begin co x is the root of T; 

if p(x)= 1 
then delete x 
fi; 
goto completed; 

end 
fi 

od; 
�9 co at this point we either have p(v)~a and rebalancing is completed or p(v) 

= a -  1 and p(y)> a + t and rebalancing will be completed by sharing. 
if p ( v )  = a - 1 

then take s sons away from y and make them additional sons of 9. 
fi 
completed; 

Fig. 2 shows the deletion of a leaf from a (2, 4)-tree. Parameters s, t are t = 0 
and s = 1. 

A deletion of a leaf requires r + 1 node shrinkings, r node fusings for some 
integer r and possibly one node sharing. It can be accomplished in time 
0(1 +r). 
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The parameter t is a sharing threshold, which specifies when to fuse or 
share. When p(v) = a - 1 and p(y) = a +j during deletion, the algorithm performs 
a node fusing if j<t, and a node sharing otherwise. The parameter s specifies 
how many sons to shift when sharing. 

In (a,b)-trees, any values of the parameters t and s in O < t < b + l - 2 a  and 
1 <_s<_t+ 1 give a correct rebalancing algorithm. We will consider two algo- 
rithms in this paper. Let p be the hysteresis of (a, b)-trees. 

Algorithm 1 uses s = [(p + 1)/2] and t =p  + s - 1 .  Algorithm 2 uses t =0  and s 
= 1. Algorithm 2 shares whenever possible and thus terminates rebalancing as 
soon as possible, Algorithm 1 moves the arities of balanced nodes as far away 
from the critical values a and b as possible and thus invests in the future. 
Algorithms that use a more general class of rebalancing strategies are consid- 
ered in [8] and [9]. 

Next, we want to study the total cost of sequences of insertions and 
deletions into (a,b)-trees under the assumption that we start with an initially 
empty tree. We will show that the total cost is linear in the length of the 
sequence when b>2a. An even stronger result holds for Algorithm 1: the 
maximum number of rebalancing operations decreases in proportion to b +  1 
- 2 a .  This is particularly significant in some of the applications discussed later, 
where the cost (in disk accesses) of one rebalancing operation, though constant, 
is considerably larger than the cost accessing a finger or adding or pruning a 
leaf. 

The proof follows a general paradigm for analyzing the cost of sequences of 
operations, the bank account paradigm. The paradigm defines a bank account 
for a tree, and associates operations on the tree with deposits and withdrawals 
in the account. A bound on rebalancing cost follows by relating the constraints 
on deposits and withdrawals to the initial and final balances of the account. 

We will always use a special form of the bank account paradigm that we 
call a savings account. 

Definition. A savings account is a real-valued function V, defined on sets of 
nodes in partially rebalanced trees, which satisfies properties P l - P 3  below. We 
specify a savings account by giving two functions V~ and V R on integers (arities 
of nodes), and define V as follows. 

1) V(x)= VR(p(X)) if X is the root of a tree, 
2) V(x)= Vi(p(x)) if x is a node other than the root, 
3) V(S)= ~ V(x) for any set S of nodes, 

x~S 

4) V(T)= ~ V(x) for any tree T. 
x i s a n o d e o f T  

The properties satisfied by a savings account are: 

P1) VI(j)>VR(j)>O for all j, 
P2) IVy(j+ 1 ) -  V,(j)I < 1 for ~ { I ,  R} and all j, 
P3) VR(0)= VR(1)=0. 

Note the following fact about any savings account. 
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Fact $I. a) V(T)>O for any tree T. 
b) If T is  the empty tree then V(T)=0.  
c) If T' is obtained from T by adding or pruning a leaf, then V(T') < V(T) 

+1 

Proof Immediate from properties P1, P3, and P2 respectively. 

Fact $2. Let (T, v) be a partially rebalanced tree, and T' be obtained from T by 
splitting or fusing v. Let x be the father of v before splitting or fusing, an x' be 
the father afterwards. Then 

V(x') <= V(x) + 1. 

Proof The result is immediate from property P2 when x and x' both exist. 
Otherwise a root was created or deleted, and the unordered set {V(x), V(x')} is 
{VR(2), V(0)}. Since V(0)= VR(1)=0 (property P3), property P2 again gives the 
result. 

Theorem 1. Let b > 2a. Consider an arbitrary sequence of k intermixed insertions 
and deletions into an initially empty (a,b)-tree. Let B(k) be the total number of 
rebalancing operations (splittings, fusings, and sharings) during this sequence. 
Then 

a) B(k) < k/p using Algorithm I when b > 2a 
where p = [b/2] - a is the hysteresis of (a, b)-trees. 

b) B(k) < 3k/2 using Algorithm 2. 

Proof a) Let m = [b/2]. We define a savings account V for Algorithm 1 by 

V~(j) = m + [j - ml - (p + l ) 

on arities of nodes other than the root, and 

VRU ) = max(O, j -  (p + 1)) 

on root node arity. 

Fact 1. Let tree T' be obtained from T by a rebalancing operation using 
Algorithm 1. Then 

V(T') < V ( T ) - p .  

Proof We analyze each type of rebalancing operation. 

Splitting. Let node x be split into nodes x' and x". Let c = b +  1. Then the 
decrease in V at the level of x is 

V ( x ) -  V (x ' ) -  V(x")= V,(c)-  VI ([c/2]) - Vi([c/2J)(~e {I, R}) 

= c - [ c / Z ]  - [ c / 2 J  - (p  + 1) + 2 (p  + 1 ) = p + 1. 

By Fact $2 for savings accounts, V can increase at the father of x by at most 1. 
Thus 

V(T) - V(T') > V ( x ) -  V(x') - V(x") - 1 >p 
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Sharing. Let s = [(p + 1)/2]. Let node x bo r row s sons f rom node  x', and call the 
resulting nodes y and y'. Then  p(x')>m+s,  p(y')>m, and x's  father does not  
change arity. Thus  

V ( T ) -  V(T')= V(x)+ V(x ' ) -  V ( y ) -  V(y') 

= (V~(m - p  - 1 ) -  V1(m- p - 1 +s))  + (V1(p(x'))-  VI(p(x')-s)) 

= 2s = 2 [(p + 1)/2] 

> p + l > p .  

Fusing. Let node x be fused with node  x '  to form node  y. Then  p(x')=m+j,  
- p  < j  < [(p + 1)/2]. Also V(y) = V,(p (y)) < V~(p(y)), where a e  {I, R}. Let  p'=p + 1. 
Then  the decrease in V at the level of  x is 

V(x) + V(x ' ) -  V(y)> Vi(m-p') + Vt(m + j ) -  V1(2m-p '  + j )  

= (m + Ip'l - p') + (m + IJl - p') - (m + Im - p' +J l  - p') 

-- ( I m -  p'[ + IJl - ]rn - p' +Jl) + Ip'l - p' - ( - p') 

>=p'=p+ l. 

Thus by Fact  $2 for savings accounts,  

V(T) - V(T') > V(x) + V(x') - V(y) - 1 >p 

This completes  the p roof  of  Fact  1. 
We now summar ize  the savings account  a rgumen t  for Algor i thm 1. We 

have just  shown 

V(T') < V ( T ) - p  

when T '  is obta ined  f rom T by a rebalancing operat ion,  and we know 

V(T')<= V(T)+ 1 

when T '  is ob ta ined  by adding or pruning  a leaf (Fact  S 1 for savings ac- 
counts). Let  T o be the initial empty  tree, and T k be the tree after the k' th 
insert ion or deletion. Then  we have 

0 < V(Tk) < V(To) + k - pB(k) = k - pB(k) 
hence 

B(k) <= kip 
which proves  par t  a). 

b) For  Algor i thm 2, we define a savings account  V by 

V R(j) = m a x  (0 ,  j - ( b  - 1)) ,  

VI(j) = max((a  + 1/3) - j ,  VR(j) ). 

Thus  VI(j) = (4/3, 1/3, 0, .. . ,  0, 1, 2) when j = (a - 1, a, a + 1 . . . .  , b - 1, b, b + 1). 
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Fig. 3. In ordinary B-trees, b=2a-1 ,  rebalancing can always run all the way to the root. The 
figure shows an example for a = 2 

Fact 2. Let tree T '  be ob ta ined  f rom T by a rebalancing opera t ion  using 
Algor i thm 2. Then  

V(T') < V(T)- 2/3. 

Proof Fol low the p roo f  of  Fac t  1 for split t ing and fusing�9 We leave it to the 
reader  to show that  the decrease in V at the level of  splitting or fusing is 
exactly 5/3, hence V(T)-V(T')=2/3. Note  that  analysis of  fusing is s impler  
here, since fusing node  x with x'  can occur  in only one case, when p(x)=a-1 
and p(x')=a. Splitt ing always has just  one case. 

N o w  suppose  tree T '  is ob ta ined  f rom T by sharing, i.e., some node  x 
bor rows  one son from node  x', creat ing nodes y and  y'. Since p(x')>a+ 1, we 
have  a<=p(y')<=b-1, and V(x')>O before sharing, V(y')<l/3 after sharing. 
Thus  

V(T)- V(T')= V(x)+ V(x')- V(y)- V(y') 

=> V~(a-  1) + O -  V~(a) - 1/3 

= 4/3 - 1/3 - 1/3 = 2/3. 

N o w  the savings account  a rgument ,  using Fact  2, gives 

0__< V(Tk) < k - (2/3) B(k) 
hence 

B(k) <= 3 k/2. 

This completes  the p roof  of  T h e o r e m  1. 

Remarks. l) No te  that  there is a nonl inear  lower bound  on B(k) for o rd inary  B- 
trees (i.e., b=2a-1). Figure  3 shows an example.  

However ,  for o rd inary  B-trees a similar theorem holds for sequences of  
insert ions only. Define 

V~(j) = VR(j) = max  (0, j -  [b/2]) 

and  use the savings account  a rgument .  This fact is ment ioned  in [2]. 
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2) For (a, 2a)-trees, the theorem depends on the fact that the sharing 
threshold t is 0 in Algorithm 2. [-8] shows a nonlinear lower bound on B(k) in 
any (a, 2a)-tree algorithm with t =  1, even if it makes clever nondeterministic 
choices of which brother to use with underflow and which side to place the 
larger node after splitting. It is also shown that for b>2a,  the natural node 
splitting strategy (as evenly as possible) guarantees a linear bound on B(k) for 
any (a, b)-tree algorithm, independent of t. 

Theorem 1 shows that on the average the cost of rebalancing is 0(1) if we 
start with an initially empty tree. 

3. Refined Sequence of Operation Analysis 

In this section we extend the results of the previous section in two respects. We 
first compute the distribution of the rebalancing operations on the different 
levels of the tree and then we extend our analysis to arbitrary initial trees. The 
second extension will lead to a new data structure in Sect. 4 and to efficient 
algorithms for several set manipulation problems in Sect. 5. The first extension 
is motivated by the use of trees in concurrent environments and multidimen- 
sional applications. [3] provides us with an elegant method for using trees in a 
parallel environment. In the analysis of their method Bayer and Schkolnik use 
the fact that the probability that k splits have to be done after an insertion is 
exponentially decreasing in k. Our results show that this assumption is justified 
even in the presence of insertions and deletions. Willard [14] and others use 
multidimensional trees in the following sense. Trees of dimension 0 are or- 
dinary trees. A tree of dimension k is an ordinary tree T plus a k - 1  dimen- 
sional tree associated with every node of T. Typically in these applications the 
cost of a rebalancing operation on a node of height h grows exponentially in h. 
It is therefore important to know that rebalancing operations high up in the 
tree occur very infrequently. 

3.1. On the Distribution of Rebalancing Operations on the Levels of the Tree 

We need some more notation. We say that a splitting (fusing, sharing) oper- 
ation occurs at height h, if node v which is to be split (or fused with its brother 
y, or share sons with its brother y) has height h; the height of a leaf being O. A 
splitting (fusing) operation at height h expands (shrinks) a node at height h + 1. 
An insertion (deletion) of a leaf expands (shrinks) a node at height 1. 

For  any tree T and savings account F, we define the level h account Vh(T) 
as the sum of V(x) over level h nodes x of T. 

A similar but weaker result than Theorem 2(c) is also shown in [10]. 

Theorem 2 (also with Ch. Backes). Let b >1 2a. Consider an arbitrary sequence of k 
intermixed insertions and deletions into an initially empty (a,b)-tree. Let Bh(k) be 
the total number of rebalancing operations at level h during this sequence. Let m 
= [b/2]. Let p' = ( b +  1 ) / 2 - a  be the "fractional hysteresis" of (a, b)-trees, and p 
= [p'] = m - a be the hysteresis. Then 



www.manaraa.com

Sorted List Data Structure 167 

a) Bh(k) <= k/(p + 1) h using Algorithm 1, 
b) Bh(k) <= k(3/5) h - 1 in (2,4)-trees, 
c) Bh(k) <= k/c h - 1 using Algorithm 2 when b > 4, 

where c = min(2p' + 1, m - 1) __> 2. 

Proof We first examine how insertions and deletions propagate changes to 
higher levels of the tree. 

Fact 1. Let Wn(k) be the number of level h node expansions and shrinkings 
that occur during k insertions and deletions to an initially empty tree. Let 
SFh(k) be the number of level h node splittings and fusings during the same 
interval. Then 

a) Wl(k)=k,  
b) W h+ ~(k)=SFh(k). 

Proof a) Immediate from the definition. 

b) Node splitting or fusing at some level h expands or shrinks exactly one 
node in the tree, at level h+  1; this might occur after creating or before 
deleting a 1-ary root. Adding or pruning a leaf does not affect Wh+l(k) for 
h >  1, and node sharing never expands or shrinks nodes (shifting sons is 
considered a different operation). 

Now let accounts V be defined for Algorithms 1 and 2 as in Theorem 1. 
We next examine how V h for Algorithm 1 is affected by all possible changes in 
the set of nodes or node arities at level h. 

Fact 2. Using Algorithm 1, let tree T' be obtained from T by one of the 
following operations at level h. If the operation is 

a) creating or deleting a root, then Vh(T')= Vh(T), 
b) expanding or shrinking a node, then Vh(T')< Vh(T)+ 1, 
c) a rebalancing operation, then Vh(T ') < Vh(T) -  (p + 1). 

Proof a) The root must be 1-ary when it is created or deleted, and V~(1)=0 for 
any savings account. Note that a) is always followed or preceded by b) as part 
of a node splittings or fusing operation at level h - 1  > 1. 

b) Immediate from property P2 of savings accounts. 
c) This has already been proved in Theorem 1. Note that, had we defined 

Algorithm 1 to shift s '= [p /2]  sons (instead of [ (p+ 1)/2]), Theorem 1 would 
still hold, but not part a) of Theorem 2. 

Fact 3. a) Bh(k) <= Wh(k)/(p + 1) using Algorithm 1, 
b) Bh(k)< Wh(k) using Algorithm 2. 

Proof. a) We use the savings account argument, restricted to nodes at level h. 
Let T O be the initial empty tree and T k be the tree after the k'th insertion or 
deletion. Then by Fact 2 we have 

0 < vh(Tk) <= Vh(To) + Wh(k) - (p + 1) Bn(k) = Wh(k) - (p + 1) Bh(k) 

for all h__> 1, hence 

Bh(k) <= Wh(k)/(p + 1) 
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b) Each insertion or deletion makes at most one rebalancing operation at 
level h, and only after expanding or shrinking a node at level h. Hence 

Bn(k) < Wh(k). 

Fact 4. 
a) SFh(k) <= Wh(k)/(p + 1) using Algorithm 1 
b) SFh(k) ~ (3/5) Wh(k) in (2, 4)-trees 
C) SFh(k) <= Wh(k)/c using Algorithm 2 when b > 4, 

where c is as defined in the theorem. 

Proof a) Immediate from Fact 3 and SFh(k)<=Bh(k). 

b) We saw in Theorem 1 (for Algorithm 2) that if tree T' is obtained from 
T by a node splitting or fusing at level h, then Vh(T ') ~ Vh(T) - 5/3. For tree T' 
obtained by node sharing at level h, we only need Vh(T')~ Vh(T), although a 
stronger bounds holds. Now, the savings account argument applied to level h 
node splittings and fusings gives 

0 < vh(Tk) < Vh(To) + Wh(k) -- (5/3) SFh(k) 

hence 
SFh(k) <(3/5) Wh(k). 

c) As in part b), we use the savings account argument applied to node 
splittings and fusings. But here the account defined in Theorem 1 for Algo- 
rithm 2 does not suffice. We define another savings account V as follows. Let 
p"= rpq. 
Case 1. If 3p" < b - a ,  define Vby 

VR(j) = max(0, j -  ( b -  2p")), 

VI(j) = max((a + p") - j ,  VR(j) ). 

Case 2. If 3 p " > b - a ,  define Vby 

V~(j) -- ~ - ml + 1, 

VR(j)=max(O,j--m + 1). 

The savings account argument requires the following fact. 

Fact 5. Let tree T' be obtained from T by rebalancing operation at level h, 
using Algorithm 2 with b > 4. Then with V defined as above, if T' is obtained 
by 

i) sharing, then Vh(T ') <= Vh(T), 
ii) splitting or fusing, then Vh(T ') < Vh(T) -c .  

Proof i) Let node x borrow one son from x', creating nodes y and y'. Then in 
both cases, V(x) - V(y) = V1(a - 1) - Vi(a ) = 1 and V(x') - V(y') > - 1. Thus, 

Vh(T)- Vh(T ') = ( V ( x ) -  V(y))+ (V (x ' ) -  V(y')) 

> 1 + ( - 1 ) = 0 .  
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ii) Fo r  splitting, let node  x be split into nodes x'  and  x". For  fusing, let 
node  x be fused with x'  to form node  y. We  have 

V h ( T ) -  Vh(T ') = V(x) - l/(x') - V(x") for splitting 

where V(x )=  V~(b+ 1)= V1(b+ 1), ~ { I , R } ,  and 

vh(r )  -- Vh(T ') = V(x) + V(x') - V(y) for fusing, 

where V(y) = V~(p(y)) < V~(p(y)), a t  {I, R}. 

Case I. 3p" <=b-a. 

Case 1.1. b is odd. Then  p" =p '=p.  

Splitting. Note  that  b +  1 = 2 m  and a + p " = m .  We have 

vh( r )  - vh( r ') = V~(b + 1) - 2 Vx(a + p") 

= ( 2 p " + l ) - O = 2 p ' + l > c .  

Fusing. Note  that  2 a - 1  = 2 m - 1 - 2 p = b - 2 p " .  We have 

V h ( T ) -  Vh(T ') > V t (a -  1)+ V1(a ) - V~(2a-  1) 

= (p" + 1 ) + p ' - O = 2 p " +  1 = 2 p ' +  1 >c .  

Case 1.2. b is even. Then  p " = p ' +  1 / 2 = p +  1. 

Splitting. Note  that  b +  1 = 2 m + l  and a + p " = m +  1. We have 

V h ( T ) -  Vh(T ') = Vi(2m + 1 ) -  V/(m + 1 ) -  V1(m ) 

= Vi(b + 1) - V~(a + p") - V~(a + p) = (2p" + 1 ) -  0 -  1 

= 2 p " = 2 p ' + l > c .  

Fusing. Note  that  2 a -  1 = 2 m - 2 p -  1 = b - 2 p ' = b - ( 2 p " -  1). We have 

Vh(T) -- Vh(T ') > V1(a - 1) + Vl(a ) - Vi(Za - 1) 

= ( p "  + 1) + p " -  1 = 2 p " = 2 p '  + 1 >c .  

Case 2. 3 p " > b - a .  

Splitting. Let b ' =  b + 1, so m = [b'/2J. Then  

V h ( T ) -  Vh(T ') = V~(b')- Vt(kb'/2])- V~([b'/2]) 

= (b '  - m + 1)  - ( [ b ' / 2 ]  - m + 1) - ( [ b ' / 2 ]  - m + 1)  

= m - l > = c .  
Fusing. 

vh(r )  -- v h ( r  ') > V,(a - 1) + V~(a) - V~(2a - 1) 

= V~(m - p - 1) + Vt(m - p) - Vt(Zm - (2p + 1)) 

= ( p  +2 )  + ( p  + 1 ) - ( I m - ( Z p  + 1)l + 1) 

= 2 p  + 2 - 1 ( 2 p +  1 ) -  ml. 
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This last quantity is m + l  when 2 p + l > m ,  and is > m - 1  if 2 p + l > m - 1 .  
Now 3 p " > b - a  gives, when b is odd, 

3 p > ( 2 m - 1 ) - ( m - p ) ,  hence 2 p + l > m  

and when b is even, 

3(p+l )>2m-(m-p) ,  hence 2 p + l > m - 2  and 2 p + l > m - 1 .  

Thus we have 2 p + l > m - 1  when 3p">b-a ,  and 

Vh(T) - Vh(T ') __> 2p + 2 -- [(2p + 1) -- m[ 

>m--l>=c. 

This completes the proof of Fact 5. 
To complete the proof of Fact 4, part c), we use Fact 5 and the savings 

account argument restricted to splittings and fusings. This follows part b) of 
Fact 4 exactly; the details are left to the reader. 

Now from Facts 1 and 4 and induction on h, we have 

Wh(k) ~ k/(p + 1) h- 1 using Algorithm 1 

Wh(k) ~= k(3/5)h- 1 in (2, 4)-trees 

Wh(k) ~ k/c h- 1 using Algorithm 2 when b > 4 

Combining these results with Fact 3 gives the theorem. 

Remarks. 1) Note that Theorem 2 also holds for Algorithm 1 when p=0 .  In 
(a, 2a-1) - t rees  we have Bh(k)<k, which is consistent with B(k)=O(klogk). In 
(a, 2a)-trees, Algorithm 1 = Algorithm 2, but parts b) and c) give a better bound 
than a). 

2) Theorem 1 shows that Algorithm 1 is preferable to Algorithm 2 for 
reducing total rebalancing cost when p > 1. Theorem 2 shows that Algorithm 2 
is preferable for reducing propagation of rebalancing to higher levels of the 
tree. 

3) Bh(k) is the number of insertions and deletions which require rebalancing 
up to height h or higher. Theorem 2 shows that this number is exponentially 
decreasing with h. 

We conclude from this last remark that the analysis in [3] can be used to 
show that (a,b)-trees for b>=2a behave well in a parallel environment in the 
presence of insertions and deletions. 

3.2. Arbitrary Initial Tree 

In this section we treat the case of an arbitrary initial tree. 
Let T O be an arbitrary (a, b)-tree. Suppose now that we execute a sequence 

of k insertions and deletions on To, using either Algorithm 1 or Algorithm 2, 
and obtain tree T k. Let B(k) be the number of rebalancing operations that 
occur during this sequence. Then we can derive a bound on B(k) using the 
savings account argument as follows. Let N be the set of nodes in T o. Let 
account V be as defined in Theorem 1, w be the minimum amount by which 
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each rebalancing operation decreases V, and let W= V~(b) 
= max VI(j)> max VR(j). Then we have 

a<=j<=b O<j<-_b 

0 < V(Tk) < V(To) + k - w B(k) 
hence 

B(k) <_ k/w + V (To)/W < k/w +(W/w) INI. 

However, the term (W/w)INI in this bound is much larger than necessary when 
k ~ INI, since only a small subset of nodes in N can be affected by k insertions 
or deletions. It is also possible to significantly decrease the factor W/w for 
Algorithm 1 when 2a is close to b. 

In Theorem 3 we give a bound on rebalancing cost starting from an 
arbitrary tree that answers these shortcomings. Let N ~ be the set of nodes in T O 
that are affected by rebalancing during k insertions or deletions, and let N k be 
the similar set of nodes in T k. Then 

V(To)-  V(Tk)= V(N ~ - V(Nk) <(W/w) IN~ 

We actually relate N ~ to the set A ~ of ancestors in T O of leaf positions at 
which the k insertions and deletions occur. It is intuitively obvious that only 
nodes in A ~ and their successors in subsequent trees (possibly after rebalanc- 
ing) can overflow or underflow and initiate a rebalancing operation. However, 
N ~ can contain nodes not in A ~ which participate in fusing or sharing. 

The proof uses the savings account argument, restricted to the set A ~ and 
its successors in subsequent trees. The fact that sometimes N~ ~ requires 
using different accounts V (with smaller w) than in Theorem 1, but also reduces 
W/w to 1 for Algorithm 1. We derive a bound on ]A~ in Theorem 4. 

Theorem 3. Let b>2a. Consider any sequence of k intermixed insertions and 
deletions into an arbitrary initial tree T o. Let B(k) be the total number of 
rebalancing operations during this sequence. Let p~ . . . .  ,Pk be the set of leaf 
positions in T O at which leaves are eventually inserted or deleted in constructing 
Tk, ordered Pl <P: <.. .  <Pk, and let A be the number of ancestors in T O of these 
leaf positions. Then 

a) B(k)<2k/p+ A using Algorithm 1 when b> 2a 
where p = [ b / 2 ] -  a is the hysteresis of (a, b)-trees. 

b) B(k)<2k + 2A in (a, 2a)-trees, 
c) B(k) < 2k + A using Algorithm 2 when b > 2a. 

Proof (all parts). We first describe a process for marking nodes during the 
rebalancing process, and labelling the leaves of the trees constructed with 
positions of leaves in T o. The process also (conceptually) keeps a copy of To, 
and marks certain nodes in T o. For  any tree T' in the sequence of partially 
rebalanced trees constructed during k insertions and deletions, let M T, denote 
the set of marked nodes in T', and M ~ denote the set of nodes in T O that have 
been marked while constructing T'. 

Initially, we have T'= To, M T,=M ~ and all leaves in T' are labelled 
with their position in To, numbered 0 to [T ' I -1 .  Let U T, be the set of 
unmarked nodes in T', and U ~ be the set of nodes in T O but not in M~ 
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The following fact is certainly true initially, and is easily seen to remain 
true after each step in insertion or deletion. 

Fact 1. If node x is in UT,, then the subtree rooted at x is unchanged from T O 
to T', i.e., 

a) x has not participated in any rebalancing operation, 
b) no leaf has been added or pruned from any descendant of x. 

The marking process now proceeds as follows, where tree T' is obtained from 
T by one step in insertion or deletion. 

Case 1. A rebalancing operation: Mark all nodes in T' that participated in 
rebalancing, and leave M ~ = M ~ 

Case 2. The f t h  adding or pruning of a leaf. 

a) The leaf position pj in T O corresponding to the f t h  insertion or deletion 
is determined as follows. If leaf l~ is pruned, let pj be its label. If leaf l~ is 
added, let pj be the label of an adjacent brother leaf in T' (or p j=0  if there is 
no brother), and label l~ with pj. If there are two adjacent brothers of lj with 
distinct fathers, choose pj to be the label of the brother with the same father as l~. 

b) Mark all ancestors Aj in T' of leaf I i and all ancestors A ~ in T O of leaf pj. 
In Case 2(b), let UA~ and UA ~ be the sets of newly marked nodes 

(unmarked ancestors) in T' and T o. Thus 

UA~176 ~ and UAj=(U T in T')nAj.  

Also let UA~ be the set (UA~ in T). 
Note that M~ is the disjoint union of UA ~ 1 <j<k,  which is just the set 

of ancestors in T O of the leaves p~ defined in Case 2(a). 
Next we examine the savings account argument restricted to the sets MT,. 

We consider adding or pruning a leaf in Fact 2, and rebalancing operations in 
Fact 3. 

Fact 2. Let tree T' be generated from T by the f t h  adding or pruning of a leaf. 
Let V be any savings account. Then 

a) V(MT, ) ~ V(MT)+ V(UA T) + 1, 
b) V(UA~)< V(UA~ 

Proof a) The set  (M T, in T) is just MTU UA T, and adding or pruning a leaf 
expands or shrinks one node in this set by 1. 

b) Let UA' be the set of nodes (UA T in To). Then UA'~_UA ~ by Fact 1, 
and nodes in UA' have not changed in constructing T. Thus V(UA T) 
=V(UA')<=V(UA~ Note that U A ~  ' consists only of nodes in T o that 
participate in fusing or sharing during the construction of T from T o. 

We use the following savings accounts for parts a) through c) of the 
Theorem. 

a) For Algorithm 1 when b>2a (hence p=[b/2]-a>O),  

VR(j) = max(0, j - (b - [p/2]), 

VI(j) = max((a + [p/2]) - j ,  VR(j)). 
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b) For  (a, 2a)-trees, 

VR(j) = max  (0, j -- (2 a -- 1)), 

VI(j) = m a x ( ( a  + 1/2) - j ,  VR(j)). 
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c) Fo r  Algor i thm 2 when b > 2a, 

VRU ) -- max  (0, j -  (b - 1/2)), 

FI(j ) = max((a  + 1/2) - j ,  VR(j)). 

Fact 3. In cases a) through c) of  the theorem,  let tree T '  be obta ined  f rom T by 
a rebalancing operat ion.  Then  

V(MT, ) <_ V(MT) - w 

where w =  [p/2] for par t  a) and w =  1/2 for parts  b) and c). 

Proof Let  S and  S' be the sets of  nodes in T and T '  that  par t ic ipate  in 
rebalancing.  Case 1 of  the mark ing  process guarantees  that  S'~_MT,. Case 2 
guarantees  that  an  unba lanced  node  and  its father (if present) are in M T. Thus  
for node  splitting, S~MT, and V(MT)-V(MT,)= V(S)-V(S'). We leave it to 
the reader  to show the result for splitting, following T h e o r e m  1. 

For  fusing and  sharing, let node x either fuse with x '  ( forming node  y) or  
bo r row  f rom x' (resulting in nodes y and y'). Then  x '  m a y  or m a y  not  be  in 
M T. But, letting M " = M r - { x '  }, we need only show 

V(MT, ) < V(M") - w 

since V(M") < V(MT). 

Fusing. We have  V ( x ) = l + w  in all cases. In  cases b) and c) we have V(y) 
= V~(2a-1)=0,  a~{I,R}.  In case a), let m=[b/2].  Then  

p(x') < m + [(p + 1)/2] - 1 = m + [p/2], 
hence 

p(y) __< (m - p - i) + (m + Lp/2J) = (2 m - 1) - [p/2] _-< b - [p/2],  

so V(y)= 0 also in case a). Thus  

V(M") - V(MT,) > V(x) -- V(y) - 1 = w. 

Sharing. a) We have V ( x ) = l + [ p / 2 ]  before sharing, V ( y ' ) = 0  and V(y)=V(x)  
- [(p + 1)/2] =< 1 after sharing. Then  

V(M") - V(MT,)= V ( x ) -  V (y ) -  V(y') 

>(1 + [ p / 2 ] ) -  1 - 0 =  [p/2]. 

b,c) We  have  V(x)=3/2, V(y)=l /2 ,  and V(y')<l/2,  similar  to Fac t  2 in 
T h e o r e m  i. Then  

V ( M " ) -  V(MT, ) = V ( x ) -  V ( y ) -  V(y') 

3/2 - 1/2 - 1/2 = 1/2. 
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Now let w be as defined in Fact 3. Then by induction on the steps of insertion 
and deletion, Facts 2(a) and 3 give 

V(Mzk)<V(O)+ ~ (V(UAT)+ 1)-wB(k). 
l<-_j<-k 

Let A-M~ rk, the set of ancestors in T o of leaves p j, l<_j<k.  We have 
V(UA~)< V(UA ~ by Fact 2(b), and ~ V(UA~ V(A). Thus 

l<-_j<=k 

0 < V(MT~ ) < k + V(A)-  wB(k) 
hence 

B(k) < k/w + v(a)/w 

by the savings account argument. 
Now let W= max V1(i) > max VR(i ). Then V(A) <= W IAI. 

a<=i<=b O<__i<b 
This shows 

B(k) < k/w + (W/w) IAI 
where 

a) W/w= [p/2]/[p/2] = 1 for Algorithm 1 when b >2a ,  
b) W/w = V(2a)/w = 1/(1/2)= 2 for (a, 2a)-trees, 
c) W/w = (1/2)/(1/2) = 1 for Algorithm 2 when b > 2a. 

This completes the proof of Theorem 3. 
We now derive a bound on the number of ancestors of a set of leaves, 

given their positions. We use the name (a, oo)-tree for any tree T where each 
interior node except the root has at least a sons, and the root has at least 
min(2, [TI) sons. 

Theorem 4. Let T be an (a,~)-tree with N leaves. Let l <__pl ~P2~. . .  <=p,<N. 
Let m be the total number of ancestors of the leaves in positions Pi, 1 <_ i <_ r. Then 

m=<3r+2 ( f log .N]  + i [l~ 1)J). 
i = 2  

Proof A proof of this fact for the case a = 2 can be found in [5] (Lemma 7). 
We give a self-contained proof here. 

For every node v label the outgoing edges with 0 .. . .  , p(v)-1 from left to 
right 

O ~ p ( v ) -  1 

Then a path from the root to a node corresponds to a word over alphabet 
{0, 1,2, ...} in a natural way. 

Let A t be the number of edges labelled 0 on the path from the root to leaf 
p~, 1 <i<r. Since an (a, c~)-tree of height h has at least 2 . a  h-1 leaves, we 
conclude 0 < A i < 1 + [log, N/2J. Furthermore, let l~ be the number of interior 
nodes on the path from leaf pi to the root which are not on the path from leaf 
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Pi-1 to the root. Then 

m < i + Llog~ N/2J + ~ I v 
i = 2  

Consider  any i > 2 .  Let v be the lowest c o m m o n  node on the paths from leaves 
Pi-  t and pi to the root. Then edge k~ is taken out  of  v on the path to p~_ 1 and 
edge kz>k ~ is taken on the path to Pv 

Note  that the path from v to leaf Pi-1 as well as to leaf pi consists of 
l~ + 1 edges. 

Claim. A~ > Ai_ 1 + Iz - 2 [log~(p~ - pz_ 1 + 1)] - 3. 

Proof The paths f rom p~_ t and p~ to the root  differ only below node v. Let s 
be minimal  such that  

a) the path from v to Pi-~ has the form k I e / /w i th  I//I = s  and ~ contains no 0. 

b) the path from v to p~ has the form k z 01"1 7 for some 7 with 171 =s .  Note  
that either/3 starts with a 0 or  7 starts with a non-zero and that  Ic~l + I//I = li. 

Then  

V 

/ 

\ 

Pi-1 Pi 

Ai=Ai-1+if k I=0 then - 1 

+ number  of  zeroes in 7 

- n u m b e r  of  zeroes in/~ 

> A i -  1 - 1 + ( l  i - s )  + 0 - s .  

It remains to show that s < 1 + [lOga(pl--Pl-1 + 1)J. 
This is certainly the case if s = 0 .  Suppose now that s > 0 .  
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We noted above that either fl starts with a zero or y starts with a non-zero. 
In the first case consider node w which is reached from v via kt ct 1, in the 
second case node w which is reached from v via k 2 0 I'l 0. All leaf descendants 
of w lie properly between p~_x and Pv Furthermore, w has height s - 1  and 
hence at least a s- ~ leaf descendants. This proves 

and hence 
a ~- 1 < P i -  Pi- 1 -- 1 

s~< 1 + [ log,(p~-p,_ ~ - 1)J 

=< 1 + [ l og , (p i -P i -  1 d'- 1)J. 

Using our claim repeatedly, we obtain 

Ar>=A 1+ ~ I , - 2  i l~ +1) 
i = 2  i = 2  

- 3 ( r -  1). 

Since A t <  1 +logaLN/2 ] and A1 >0,  this proves 

and hence 

~ l ~  =< 3 r -  3 + 1 + Llog a N/2J 
i = 2  

+ 2  ~ Llog,(p~-p~_ 1 + 1)J 
i = 2  

m < 3 r - 1 + 2 [log, N/2] + 2 i [_log,(p~ - p~_ 1 + 1)J. 
i = 2  

This completes the proof  of Theorem 4. 

4. A Representation for Linear Lists with Fingers 

In this section we use (a,b)-trees in order to represent linear lists. This section 
follows [5] very closely. 

Let L be a sorted sequence of n items drawn from some linearly ordered 
universe U. Let T be an (a, b)-tree with n leaves. We say that T represents L if 

1) the elements of L are stored in the n leaves of T in increasing order from 
left to right. 

2) in each interior node v of T, p(v) -1  keys ( =  elements of U) are stored. If  
k is the i-th key in node v then the elements in all leaves in the ( i -1 ) - th  
subtree (i-th subtree) of v are less than or equal (greater than) k. 

Figure 4 gives an example. 
A finger into list L is a pointer to an element of L. Fingers may be used to 

indicate areas of high activity in list L. (a, b)-trees as they stand do not support  
efficient search in the vicinity of fingers. This is due to the fact that neighbor- 
ing leaves may be connected only by a very long path. Therefore, we introduce 
level-linked (a, b)-trees. 
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In level linked (a,b)-trees all tree edges are made traversible in both 
directions (i.e., there are also pointers from sons to fathers); in addition each 
node has pointers to the two neighboring nodes on the same level. Figure 5 
gives an example. 

A finger into a level-linked (a, b)-tree is a pointer to a leaf. Level-linked 
(a, b)-trees allow very fast searching in the vicinity of fingers. 

Lemma 1. Let p be a finger in a level-linked (a, b)-tree T. A search for a key k 
which is d keys away from p takes time (9(1 +logd).  

Proof. We first check whether k is to the left or right of p, say k is to the right 
of p. Then we walk towards the root, say we reached node v. We check 
whether k is a descendant of v or v's right neighbor on the same level. If not, 
then we proceed to v's father. Otherwise we turn around and search for k in 
the ordinary way. 

Suppose that we turn around at node w of height h. Let u be that son of w 
which is on the path to the finger p. Then all descendants of u's right neighbor 
lie between the finger p and key k. Hence, the distance d is at least 2 h-1 .  The 
time bound follows. 

Fig. 4. A (2,4)-tree for list 2, 4, 7, 10, 11, 15, 17, 21. The universe is the set of natural numbers. 

( f -  11 

Fig. 5. A (2,4)-level linked tree for list 2, 4, 7, 10, 11, 15, 17, 21, 22, 24 
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Lemma 2. A new leaf can be inserted in a given position of a level-linked (a, b)- 
tree in time O(1 +s), where s is the number of splittings caused by the insertion. 

Proof Let w be the leaf to be split, let cont(w) be the element stored in w, let x 
be the element to be inserted and let v be the father of w. We give v an 
additional leaf son immediately to the right of w, say w' and store 
min(x, cont(w)) in w, max(x, cont(w)) in w' and we make min(x, cont(w)) the key 
between the pointers to w and w' in w Next consider a split. If v is to be split it 
is easy to update the links in constant time. To maintain the key organization 
we place the left [(b + 1) /2J-  1 (right [-(b + 1 ) /2 ] -  1) keys of v into the two new 
nodes produced by the split, and we move the remaining key into the father of v. 

Lemma 3. A leaf can be deleted from a level-linked (a,b)-tree in time O(1 +f ) ,  
where f is the number of node fusings caused by the deletion. 

Proof Suppose that leaf w has to be deleted. This is achieved by deleting leaf 
w, the pointer to w in the father of w and one of the keys adjacent to the 
pointer (i.e., if w is the i-th son of v then we remove either the ( i -  1)-th key or 
the i-th key of v). The details of sharing or fusing are left to the reader. 

Lemma 4. Creation or removal of a finger in a level-linked (a,b)-tree takes time 
0(1). 

Proof. Obvious. 

Now we apply our result of Sect. II and show that even though the search 
time in level linked (a, b)-trees can be greatly reduced by maintaining fingers, it 
still dominates the order of total execution time when b__>2a. But note that 
some rebalancing operations are very expensive in level-linked trees (Remark 
3, following). Thus, rebalancing cost can exceed total search cost by a large 
constant factor if all searches are for keys near fingers. 

Theorem 5. Let b >= 2a. Then any sequence of searches, finger creations, finger 
removals, insertions and deletions starting with an empty list takes time 

0 (total cost of searches) 

if a level-linked (a, b)-tree is used to represent the list. 

Proof Let n be the length of the sequence. Then the total cost for the searches 
is ~2(n) by Lemma 1. On the other hand the total cost for the finger creations 
and removals is O(n) by Lemma 4 and the total cost of insertions and deletions 
is O(n) by Lemma 2 and 3 and Theorem 1. 

Theorem 6. Let b>=2a. Let L be a sorted list of n elements represented as a 
level-linked (a,b)-tree with one finger established. Then in any sequence of 
searches, finger creations, insertions, and deletions, the total cost of the sequence 
is 

O(log n + total cost of searches). 

Proof Let S be any sequence of k searches, finger creations, insertions and 
deletions containing exactly s insertions and d deletions. Let T O and T k by the 
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(a, b)-trees which represent list L before and after S is performed, respectively. 
Assume that deleted elements (conceptually) remain in T k as phantoms (cf. Fig. 
6), which are invisible for purposes of searching, determining arities of nodes, 
or rebalancing. Thus, T k has n + s (real or phantom) leaves, and the positions of 
all operations in S correspond to leaves in T k. Assign a label l(p) in the range 
0 , . . . , n -1  to each leaf p in Tk, representing a leaf position in To, as in the 
proof of Theorem 3. 

We now proceed precisely as in the proof of Theorem 4 in [5]. The details 
are left to the reader. 

Remarks. 1) Theorem 6 is not true for ordinary B-trees, b = 2 a - 1 .  In that case 
a related result was proven in [5]; they show that the theorem is true if the 
sequence of operations either does not contain insertions or does not contain 
deletions, or if insertions and deletions do not interact too much. 

2) [7] describes a data structure which achieves a similar time bound in the 
worst case, i.e., for every single insertion and deletion the cost is bounded by 
the preceeding search; we claim this only for the average over a sequence. 
However, they have to pay a price for it: fingers creation are much harder and 
the constants in the bounds for the run times are much larger. 

i insertion of new 
4th leaf and splitting 

Fig. 6. A (2, 4)-tree with phantoms 

deletion ~ ~  
of 4th leaf 

and sharing 

a phantom 

deletion of third 
~ leaf and fusing 

insertion / \ 
o f a n e w t h i r d l e a ~ ~  ~ 

phantoms 
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3) It was remarked by one of the referees that in conventional applications 
(trees of high arity, stored on secondary storage) the constants in the 0- 
expressions in Lemmas 2 and 3 and hence in Theorem 6 are rather large. Note 
that splitting (or fusing) requires the change of about b/2 (a resp.) son-to-father 
pointers. In the applications mentioned above, this would require fetching 
about that number of nodes from secondary memory. 

We will next describe a data structure, (a,b)-trees with fingers, which 
overcomes this difficulty at the cost of increased search times and yet supports 
most applications described in Sect. 5. 

In an (a, b)-tree with fingers each node has the ability to store a pointer to 
its father. However, only nodes on a finger path, i.e., a path from one of the 
fingers to the root, make use of that ability and actually contain a pointer to 
their father. Also each node on a finger path knows which of his sons also are 
on a finger path. For all other nodes the son-to-father pointers contain trash. 
Also there are no side-links. We remark that in some applications, in particu- 
lar, if there will be only one finger, it is preferable to store the finger paths 
separate from the tree, say in a linked list or pushdown store. 

A search in an (a, b)-tree with fingers proceeds as follows. Say we start at 
finger p and search for key k. We first check whether k is to the right or left of 
p: say k is to the right of p. Then we walk to the root until we reach a node v 
such that k is a descendant of v. We turn around at v and search for k in the 
ordinary way. Also on the way down from v we set the son-to-father pointers 
of the descendants of v to their correct value. Once we reach the leaf level, we 
can establish a finger at k at the cost of O(1), or insert/delete k at the cost O(s), 
where s is the number of splittings/fusings caused by the insertion/deletion. 

This shows that Lemmas 2 to 4 stay true, if level-linked (a,b)-tree is 
replaced by (a,b)-tree with fingers. Note however, that only the son-to-father 
links on the finger paths need to be maintained and hence the cost of a 
splitting/fusing will be generally lower in (a, b)-trees with fingers than in level- 
linked (a, b)-trees. 

However, there is a price which we have to pay. Lemma 1 does not stay 
true. Rather the cost of a search is the height of node v defined above. 

Lemma 1'. Let p be a finger in an (a, b)-tree with fingers. Let k be a key which 
is d keys away from p and let h be the height of the lowest common ancestor of p 
and k. Then the cost of a search for k starting at p is 

O(1 + h)= ~2(1 + log d). 

Proof By preceding discussion. 

Lemma 1' tells us that a search in an (a, b)-tree with fingers is never cheaper 
than the corresponding search in a level-linked (a, b)-tree. Hence theorems 5 
and 6 stay true if we replace level-linked (a, b)-trees by (a, b)-trees with fingers. 

Theorem 6'. Same as theorem 6 but level-linked (a,b)-tree replaced by (a,b)-tree 
with fingers. 
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5. Applications of Level-linked (a, b)-Trees 

In general, we advise to use level-linked (a,b)-trees (b>2a)  whenever there are 
(maybe time-varying) areas of high activity. The finger will make the searches 
very fast, and finger creations, insertions and deletions take constant time on 
the average. This situation occurs quite frequently in the implementation of 
event lists. 

More specifically, level-linked (a,b)-trees permit the optimal realization of 
many set operations. 

Theorem 7. Let A and B be sets represented as level-linked (a, b)-trees, b > 2a. 

a) Insert(A,x), Delete(A,x), Search(A,x), Concatenate(A,B) and Split(A,x) 
can be done in logarithmic time. (Here Conca tena te (A ,B)=AuB /f 
max A < min B and undefined otherwise and Split(A, x) = (A 1, A 2) where A 1 = {a; 
a~A and a<x}  and A z = { a ;  a~A and a> x}. 

b) Let n=max(IAI, IBI) and m=min(IAI, IBD. 

Then A u B, A GB, A riB, A \ B  can be constructed in time O(1og(n~m)). 

Proof a) The algorithms are the same as for 2-3 trees. We refer the reader to 
[11] for details. 

b) We first show how to perform AGB.  

Assume w.l.o.g. [AI > [BI. The algorithm is as follows: 

a) establish a finger at the first element of A 

b) while B not exhausted 
do 
(b.1) take the next element, say x, of B and search for it in A starting at 

the finger 
(b.2) insert or delete x from A, whatever is appropriate 
(b.3) establish a finger at the position of x in A and destroy the old 

finger 
od. 

Let p~,. . . ,  Pro, m = IB[, be the positions of the elements of B in the set A u B, let 
P0 = 1. Then the above program takes time ([AI =n) 

r a - -1  

z 
i = O  

by Theorem 6 and the observation that total search time is bounded by 

m - - 1  

l~ 1 - P i  + I). 
i = 1  

This expression is maximized for Pi+l -P i=(n+m) /m  for all i, and then has 
value O(log(n + m) + m log((n + m)/m)) = O(m log((n + m)/m)) = O(1og(n~m)). 

In the case of A uB,  we only do insertions in line (b.2). In the case of A c~B, 
we collect the elements of A n B  in line (b.2) (there are at most m of them) and 
construct a level-linked (a, b)-tree for them afterwards. 
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Finally, we have to consider A \ B .  If  IAl~lBI, then we use the p r o g r a m  
above. If  [AI < IB[ then we scan through A linearly, search for the elements  of  A 
in B as described above  (roles of  A and B reversed) and delete the appropr ia te  
elements  f rom A. Apparent ly ,  the same t ime bound  holds. 

n - t - m  Note  that  there are ( m ) possibilities for B as a subset  of  A w B .  Hence  
log(n~ m) is also a lower bound  on the complexi ty  of  union and symmetr ic  
difference. 

Next  we prove  the corresponding theorem for (a, b)-trees with fingers. 

Theorem 7'. Same as Theorem 7, but level-linked (a, b)-tree replaced by (a, b)-tree 
with fingers. 

Proof Part  a) is obvious.  For  par t  b) we use the same a lgor i thms as in the 
p roof  of  T h e o r e m  7. Note  that  the cost of  establishing a finger at the first 
e lement  of  A is O(log n), since we have to traverse the left spine of the tree for 
A in order  to establish the son- to-fa ther  pointers at the finger path.  F r o m  
T h e o r e m  6' we infer that  the cost of  the p r o g r a m  is bounded  by 

O(log n + total  cost of  the searches). 

It remains  to derive a bound  on the total  cost of  the searches. Whilst  this task 
was trivial in the case of  level-linked trees (using L e m m a  1), it is non-tr ivial  in 
the case of  (a, b)-trees with fingers (using L e m m a  1'). We will establish such a 
bound  using Theo rem 4. (Note  that  T h e o r e m  4 gives a bound  on the sum of 
the heights of  the lowest c o m m o n  ancestors  (1.c.a.) of  posi t ions Pi-1 and pi, 
1 <_i<_r.) Before we can apply  T h e o r e m  4 we need a l e m m a  abou t  the effect of  
insert ions/delet ions on the height of  1.c.a.'s. 

Lemma 5. Let T be an (a, b)-tree, b > 2 a - 1 .  Let x and y be two leaves of T and 
let v be the l.c.a, of x and y. Let z be a leaf different from x and y 

a) let v' be the l.c.a, of x and y after  the deletion of leaf z. Then 
height(v') <__height(v) + 1 

I f  height(v') = height(v) + 1 then z is a descendant of v' but not a descendant of v. 
I f  z is a descendant of v then height(v')__< height(v). 

b) Let v' be the l.c.a, of x and y after splitting leaf z. Then 
height(v') > height(v). 

Proof a) A delet ion of a leaf is followed by a sequence of fusings followed by 
at mos t  one sharing. A fusing combines  two nodes and can therefore never  
increase the height of  the 1.c.a. of  x and  y. Next  consider the case of  a sharing, 
say node  u takes away some son f rom node w. Then  z was a descendant  of  u. 
Also if either u and w are bo th  descendants  of  v or if neither of  them is, then v 
does not  lose descendants  and hence v is still an ances tor  of  x and y after the 
sharing. This shows height(v')<=height(v) in this case. This leaves the case that  
exactly one of the nodes u and w is a descendant  of  v. Since u and w are 
brothers ,  this can only be the case if either u or  w is equal  to v and the other  is 
a b ro ther  of  v. If  u is equal to v, then v stays an ancestor  and hence 
height (v') __< height(v). 
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If w is equal to v then either v stays ancestor of x and y or v's father v' 
becomes the 1.c.a. of x and y. In the latter case z is a descendant of v' but not 
of v. This proves the lemma. 

b) A split can never decrease the height of a 1.c.a. 
Next we will use Lemma 5 in order to show that the total cost of the 

searches is maximal if our algorithm has to compute A w B ,  i.e., interspersed 
deletions can only decrease search times. In the case of A wB, Theorem 4 gives 
us a bound on total search time. 

Let B = { x  I . . . .  ,x,,}, x l  < x z  < . . . < x  m. Our algorithm for computing A O B  
( A w B  . . . .  ) processes the x's in increasing order. When x i is processed, we have 
processed x l ,  . . . ,x  i_ l already, a finger p at the position of x i_ 1 is established 
and we search for xi starting at that finger. Let hi(i) be the height of the lowest 
common ancestor of x~ and x~_~ (more precisely, of the leaves where the 
searches for x~_ 1 and x~ are going to end) after processing x~ . . . .  , xj.  If  xj is in- 
serted into A by our algorithm then hj(i)>h~_ ~(i). If xj is deleted from A by our 
algorithm, then hj( i )<hj_  1(i)+ 1 by part  a) of Lemma 5. Furthermore, if hi(i) 
=h j_~( i )+ l ,  then xj  was a descendant of the new 1.c.a. of xi_l  and xi and 
hence xj+~ .. . .  ,x~_ 2 are descendants of that new 1.c.a. This shows that there is 
at most one key among x~,. . . ,x~_ 2 such that its deletion increases the height 
of the lowest common ancestor of x~_ ~ and x~. This observation together with 
the fact that insertions never decrease the height of 1.c.a.'s shows that the cost 
of the search for x~ in our algorithm, i.e., the height of the 1.c.a. of the finger p 
and x~, is bounded by 1 + the height of the 1.c.a. of xi_~ and x~ in the tree 
constructed for A w B  by our algorithm. 

We are now in a position to use Theorem 4 and conclude from it that the 
total cost of the searches is 

/ m - 1  \ 

o / l o g / .  + mt + Z logl, +, - + 1)) 
\ i = O  / 

where the p~'s are defined as in the proof  of Theorem 7. Hence the total 
running time of our algorithm is 

m - - 1  

i = 0  

by the argument in the proof  of Theorem 7. 
We conclude this section with the remark that the very frequent operation 

of updating a master file against a file of updates is subsumed in Theorems 7 
and 7' and hence level-linked (a,b)-trees, (a,b)-trees with fingers support  op- 
timal update. 

6. Conclusion 

We carried out a detailed sequence of operations analysis of (a,b)-trees in the 
case b > 2 a .  Our analysis shows that weak B-trees are superior to ordinary B- 
trees ( b = 2 a - 1 )  in two areas: 
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a) Concurrent usage of trees: in weak B-trees rebalancing operations are 
concentrated near the leaves even in the presence of insertions and deletions. 
Thus, a high degree of parallelism is guaranteed. 

b) Finger searches: level-linked weak B-trees support finger searches. Al- 
though finger searches are usually more efficient (in particular if there is 
locality of reference) than ordinary searches, total search time still dominates 
the cost of sequences of operations. Level-linked weak B-trees allow the ef- 
ficient realization of many set operations. In particular, they support optimal 
update of a master file against a file of updates. 
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