
www.manaraa.com

Acta Informatica 17, 157-184 (1982)

�9 Springer-Verlag 1982

A New Data Structure for Representing Sorted Lists*

Scott Huddles tonl and Kurt Mehlhorn 2

1 Scott Huddleston, Information and Computer Science, University of California, Irvine,
Irvine, California 92717, USA

2 Kurt Mehlhorn, FB 10 - Informatik, Universit~it des Saarlandes, 6600 Saarbriicken, West
Germany

Summary. In this paper we explore the use of weak B-trees to represent
sorted lists. In weak B-trees each node has at least a and at most b sons
where 2 a < b . We analyse the worst case cost of sequences of insertions and
deletions in weak B-trees. This leads to a new data structure (level-linked
weak B-trees) for representing sorted lists when the access pattern exhibits
a (time-varying) locality of reference. Our structure is substantially simpler
than the one proposed in [7], yet it has many of its properties. Our
structure is as simple as the one proposed in [5], but our structure can
treat arbitrary sequences of insertions and deletions whilst theirs can only
treat non-interacting insertions and deletions. We also show that weak B-
trees support concurrent operations in an efficient way.

1. Introduction

Balanced trees allow the execution of the three basic dictionary operations
Search, Insert and Delete in logarithmic time.

In conventional applications searches always start at the root of the tree
and then proceed towards the leaves. Hence, they take time O(logn), where n
is the current size of the file. Insertions and Deletions are always preceeded by
a search. They consist of adding or pruning a leaf and subsequent rebalancing.
Rebalancing is restricted to the path from the new or deleted leaf to the root
and calls for local changes of the tree in some nodes of that path. Of course,
" some" is always O(logn) and hence it "only" influences the constants in the
insertion and deletion times. In a parallel environment, i.e., several processes
are operating on the same tree, it also influences the degree of parallelism.

Recently, there has been a growing interest in less conventional appli-
cations of balanced trees. In these applications searches start at the leaves,

* A preliminary version of this paper was presented at the 5th workshop on graphtheoretic
concepts in computer science, Bad Honnef, June 1980

0001- 590 3/8 2/0017/015 7/$0 5.60

www.manaraa.com

158 S. Huddleston and K. Mehlhorn

proceed towards the root then turn around and proceed downwards again.
Thus, insertion and deletion costs are not naturally dominated by the cost of
the searches. This observation has led to a number of new data structures [7,
12] as well as to a more detailed analysis of existing data structures [4, 5, 13].

In this paper we explore the use of weak B-trees for the representation of
linear lists. In weak B-trees all leaves have the same depth and every interior
node has at least a and at most b sons for some constants a,b with b>~2a. In
ordinary B-trees [2] we have b - - 2 a - 1 . We analyse the cost of sequences of
insertions and deletions into weak B-trees and show that this cost is linear in
the length of the sequence when the initial tree is empty, and sublinear when
b-2a is sufficiently large. In the case of an arbitrary starting tree we derive a
bound in terms of the positions of the insertions and deletions.

We also show that the number of insertions/deletions which require k
rebalancing operations (i.e., the last k nodes of the path to the root are effected
by local changes) decreases exponentially with k. We conclude that weak B-
trees support a high degree of concurrency even in the presence of insertions
and deletions.

In Sect. 4 we go on to show that weak B-trees are well suited to represent
sorted linear lists. Level-linked weak B-trees allow very efficient searches by
the use of fingers. A finger is a pointer to a leaf of the tree. Search times are
logarithmic in the distance from the finger. Fingers can be established and
moved in constant time, and insertions and deletions take constant time on
the average (averaged over a sequence of insertions and deletions). Hence, the
cost of the searches dominates the total cost.

In Sect. 5 we use level-linked weak B-trees in order to describe optimal
realizations of many set operations; in particular the task of updating a master
file against a file of updates can be performed optimally.

Our structure (almost) combines the advantages of the structures proposed
in [-7] and [5] and avoids their disadvantages. It is much simpler than the
structure of [7] and yet has the same behavior for sequences of operations.
More precisely, in [7] the cost of every single insertion and deletion is
dominated by the preceeding search; in our case, this is only true for a
sequence of operations. However, finger creations are much harder and the
constants in the O-expressions for the running times are much larger in their
case. Next we compare our structure with the one proposed in [5]. Our
structure is as simple yet it does a lot more. We can treat arbitrary sequences
of insertions and deletions whilst [5] can only manage sequences of non-
interacting insertions and deletions.

2. Sequence of Operation Analysis of Weak B-trees

B-trees were introduced by [2]. In B-trees all leaves have the same depth and
each internal node has at least a and at most 2 a - 1 sons where a is some
constant, the order of the tree. In weak B-trees we allow for a wider range of

www.manaraa.com

Sorted List Data Structure 159

arities of nodes. In the sequel, node always stands for interior node, i.e., leaves
are not called nodes.

Definition. p(v) denotes the number of sons of node v. When T is a tree, f T[
denotes the number of leaves of T.

Definition. Let a and b integers with a ~ 2 and 2 a - 1 <=b.

A tree T is an (a, b)-tree if

a) all leaves of T have the same depth
b) all nodes v of T satisfy p(v) <= b
c) all nodes v except the root satisfy p(v)>= a
d) the root r of T satisfies p(r)>min(2, [TI).

The class of order a B-trees is identical to the class of (a, 2a-1)- t rees . For
b>=2a we will refer to the class of (a,b)-trees as a class of weak B-trees. The
hysteresis of (a, b)-trees is defined to be [b/2]-a, following [-10]. In our exam-
ples we will always use (2,4)-trees. (2,4)-trees have been considered in [1] as
"symmetric binary B-trees", and in [6] as " 2 - 3 - 4 trees".

Lemma 1. Let T be an (a, b)-tree of height h > 1 with iT[leaves. Then

2. a h- 1 < max(2, ITI) <b h

Proof Obvious.

We infer from Lemma 1 that the depth of (a,b)-trees is logarithmic in the
number of leaves.

Insertion and deletion into (a,b)-trees is quite similar to the corresponding
operations in B-trees. An insertion means the addition of a new leaf at a given
position in the tree, a deletion means the pruning of an existing leaf at a given
position in the tree. Note that we treat the searches for these positions
seperately in what follows, i.e., for the moment we concentrate at the rebalanc-
ing aspect of (a, b)-trees.

Definition. (T, v) is a partially rebalanced (a, b)-tree, where v is a node of T and
r is the root of T, if

a) a - l < p (v) < b + l if v 4 r
min(1, [Tl)<p(v)<b+ l if v=r

b) a<p(w)<b for all w~:v,r
c) 2<p(r)<b if r4:v.

Insertion. An insertion is accomplished by a sequence of node expansions and
node splittings, terminating in a balanced (a, b)-tree. Let w be any leaf of T and
suppose that a new leaf is to be inserted to the right (left) of w. Let v be the
father of w.

1) Expand v, i.e., make the new leaf an additional son of v. The expansion
of v increases p(v) by i. If p(v) is still <b then rebalancing is complete.
Otherwise v needs to be split. Since splitting may propagate we fomulate it as
a loop.

www.manaraa.com

Fig. 1. Insertion into (2, 4)-tree

160 S. Huddleston and K. Mehlhorn

~ f i n s e r t i o n ~ of a new rig__ tmos

"~ new leaf

2) while p(v) = b + 1
do if v is the root of T

then let x be a new node and make v the only son of x
else let x be the father of v
fi;
let v' be a new node;
expand x; i.e., make v' an additional son of x immediately
to the right of v;
split v, i.e., take the rightmost [(b + 1)/2] sons away from v
and make them sons of v';
O~'-X;

od;

Fig. 1 shows the insertion of a leaf into a (2, 4)-tree.
An insertion of a new leaf requires r + 1 expansions and r node splittings

for some integer r>0 . It can be accomplished in time O(1 +r).

Deletion. A deletion is accomplished by a sequence of node shrinkings and
node fusings possibly followed by one node sharing. Deletion has two parame-
ters, t and s, described afterwards.

Let w be any leaf of T (the leaf to be deleted) and let v be the father of w.

1) Shrink v by pruning w. This decreases p(v) by 1. If p(v) is still > a or the
height of v is 1 then rebalancing is completed. (Note that we represent the
empty tree by a single node of arity 0). Otherwise, v needs to be rebalanced by
either fusing or sharing. Let y be any brother of v.

www.manaraa.com

Sorted List Data Structure

~ deletion of
leftmost ~ "~, .~_~

leaf ~ ~

I fusing

Fig. 2. Deletion from (2, 4)-tree

161

while (p(v)=a- 1 and p(y)<=a+t)
do let x be the father of v;

fuse v and y, i.e., make all sons of y sons of v and delete y;
co this will simultaneously shrink x, i.e., decrease its arity by one;

let y be a brother of x;
if x does not have a brother
then begin co x is the root of T;

if p(x)= 1
then delete x
fi;
goto completed;

end
fi

od;
�9 co at this point we either have p(v)~a and rebalancing is completed or p(v)

= a - 1 and p(y)> a + t and rebalancing will be completed by sharing.
if p (v) = a - 1

then take s sons away from y and make them additional sons of 9.
fi
completed;

Fig. 2 shows the deletion of a leaf from a (2, 4)-tree. Parameters s, t are t = 0
and s = 1.

A deletion of a leaf requires r + 1 node shrinkings, r node fusings for some
integer r and possibly one node sharing. It can be accomplished in time
0(1 +r).

www.manaraa.com

162 S. Huddleston and K. Mehlhorn

The parameter t is a sharing threshold, which specifies when to fuse or
share. When p(v) = a - 1 and p(y) = a +j during deletion, the algorithm performs
a node fusing if j<t, and a node sharing otherwise. The parameter s specifies
how many sons to shift when sharing.

In (a,b)-trees, any values of the parameters t and s in O < t < b + l - 2 a and
1 <_s<_t+ 1 give a correct rebalancing algorithm. We will consider two algo-
rithms in this paper. Let p be the hysteresis of (a, b)-trees.

Algorithm 1 uses s = [(p + 1)/2] and t =p + s - 1 . Algorithm 2 uses t =0 and s
= 1. Algorithm 2 shares whenever possible and thus terminates rebalancing as
soon as possible, Algorithm 1 moves the arities of balanced nodes as far away
from the critical values a and b as possible and thus invests in the future.
Algorithms that use a more general class of rebalancing strategies are consid-
ered in [8] and [9].

Next, we want to study the total cost of sequences of insertions and
deletions into (a,b)-trees under the assumption that we start with an initially
empty tree. We will show that the total cost is linear in the length of the
sequence when b>2a. An even stronger result holds for Algorithm 1: the
maximum number of rebalancing operations decreases in proportion to b + 1
- 2 a . This is particularly significant in some of the applications discussed later,
where the cost (in disk accesses) of one rebalancing operation, though constant,
is considerably larger than the cost accessing a finger or adding or pruning a
leaf.

The proof follows a general paradigm for analyzing the cost of sequences of
operations, the bank account paradigm. The paradigm defines a bank account
for a tree, and associates operations on the tree with deposits and withdrawals
in the account. A bound on rebalancing cost follows by relating the constraints
on deposits and withdrawals to the initial and final balances of the account.

We will always use a special form of the bank account paradigm that we
call a savings account.

Definition. A savings account is a real-valued function V, defined on sets of
nodes in partially rebalanced trees, which satisfies properties P l - P 3 below. We
specify a savings account by giving two functions V~ and V R on integers (arities
of nodes), and define V as follows.

1) V(x)= VR(p(X)) if X is the root of a tree,
2) V(x)= Vi(p(x)) if x is a node other than the root,
3) V(S)= ~ V(x) for any set S of nodes,

x~S

4) V(T)= ~ V(x) for any tree T.
x i s a n o d e o f T

The properties satisfied by a savings account are:

P1) VI(j)>VR(j)>O for all j,
P2) IVy(j+ 1) - V,(j)I < 1 for ~ { I , R} and all j,
P3) VR(0)= VR(1)=0.

Note the following fact about any savings account.

www.manaraa.com

Sorted List Data Structure 163

Fact $I. a) V(T)>O for any tree T.
b) If T is the empty tree then V(T)=0.
c) If T' is obtained from T by adding or pruning a leaf, then V(T') < V(T)

+1

Proof Immediate from properties P1, P3, and P2 respectively.

Fact $2. Let (T, v) be a partially rebalanced tree, and T' be obtained from T by
splitting or fusing v. Let x be the father of v before splitting or fusing, an x' be
the father afterwards. Then

V(x') <= V(x) + 1.

Proof The result is immediate from property P2 when x and x' both exist.
Otherwise a root was created or deleted, and the unordered set {V(x), V(x')} is
{VR(2), V(0)}. Since V(0)= VR(1)=0 (property P3), property P2 again gives the
result.

Theorem 1. Let b > 2a. Consider an arbitrary sequence of k intermixed insertions
and deletions into an initially empty (a,b)-tree. Let B(k) be the total number of
rebalancing operations (splittings, fusings, and sharings) during this sequence.
Then

a) B(k) < k/p using Algorithm I when b > 2a
where p = [b/2] - a is the hysteresis of (a, b)-trees.

b) B(k) < 3k/2 using Algorithm 2.

Proof a) Let m = [b/2]. We define a savings account V for Algorithm 1 by

V~(j) = m + [j - ml - (p + l)

on arities of nodes other than the root, and

VRU) = max(O, j - (p + 1))

on root node arity.

Fact 1. Let tree T' be obtained from T by a rebalancing operation using
Algorithm 1. Then

V(T') < V (T) - p .

Proof We analyze each type of rebalancing operation.

Splitting. Let node x be split into nodes x' and x". Let c = b + 1. Then the
decrease in V at the level of x is

V (x) - V (x ') - V(x")= V,(c)- VI ([c/2]) - Vi([c/2J)(~e {I, R})

= c - [c / Z] - [c / 2 J - (p + 1) + 2 (p + 1) = p + 1.

By Fact $2 for savings accounts, V can increase at the father of x by at most 1.
Thus

V(T) - V(T') > V (x) - V(x') - V(x") - 1 >p

www.manaraa.com

164 S. Huddleston and K. Mehlhorn

Sharing. Let s = [(p + 1)/2]. Let node x bo r row s sons f rom node x', and call the
resulting nodes y and y'. Then p(x')>m+s, p(y')>m, and x's father does not
change arity. Thus

V (T) - V(T')= V(x)+ V(x ') - V (y) - V(y')

= (V~(m - p - 1) - V1(m- p - 1 +s)) + (V1(p(x'))- VI(p(x')-s))

= 2s = 2 [(p + 1)/2]

> p + l > p .

Fusing. Let node x be fused with node x ' to form node y. Then p(x')=m+j,
- p < j < [(p + 1)/2]. Also V(y) = V,(p (y)) < V~(p(y)), where a e {I, R}. Let p'=p + 1.
Then the decrease in V at the level of x is

V(x) + V(x ') - V(y)> Vi(m-p') + Vt(m + j) - V1(2m-p ' + j)

= (m + Ip'l - p') + (m + IJl - p') - (m + Im - p' +J l - p')

-- (I m - p'[+ IJl -]rn - p' +Jl) + Ip'l - p' - (- p')

>=p'=p+ l.

Thus by Fact $2 for savings accounts,

V(T) - V(T') > V(x) + V(x') - V(y) - 1 >p

This completes the p roof of Fact 1.
We now summar ize the savings account a rgumen t for Algor i thm 1. We

have just shown

V(T') < V (T) - p

when T ' is obta ined f rom T by a rebalancing operat ion, and we know

V(T')<= V(T)+ 1

when T ' is ob ta ined by adding or pruning a leaf (Fact S 1 for savings ac-
counts). Let T o be the initial empty tree, and T k be the tree after the k' th
insert ion or deletion. Then we have

0 < V(Tk) < V(To) + k - pB(k) = k - pB(k)
hence

B(k) <= kip
which proves par t a).

b) For Algor i thm 2, we define a savings account V by

V R(j) = m a x (0 , j - (b - 1)) ,

VI(j) = max((a + 1/3) - j , VR(j)).

Thus VI(j) = (4/3, 1/3, 0, .. . , 0, 1, 2) when j = (a - 1, a, a + 1 , b - 1, b, b + 1).

www.manaraa.com

Sorted List Data Structure 165

.• Insertion
of new
rightmost

)

leaf
(

Deletion of
rightmost
leaf

Fig. 3. In ordinary B-trees, b=2a-1 , rebalancing can always run all the way to the root. The
figure shows an example for a = 2

Fact 2. Let tree T ' be ob ta ined f rom T by a rebalancing opera t ion using
Algor i thm 2. Then

V(T') < V(T)- 2/3.

Proof Fol low the p roo f of Fac t 1 for split t ing and fusing�9 We leave it to the
reader to show that the decrease in V at the level of splitting or fusing is
exactly 5/3, hence V(T)-V(T')=2/3. Note that analysis of fusing is s impler
here, since fusing node x with x' can occur in only one case, when p(x)=a-1
and p(x')=a. Splitt ing always has just one case.

N o w suppose tree T ' is ob ta ined f rom T by sharing, i.e., some node x
bor rows one son from node x', creat ing nodes y and y'. Since p(x')>a+ 1, we
have a<=p(y')<=b-1, and V(x')>O before sharing, V(y')<l/3 after sharing.
Thus

V(T)- V(T')= V(x)+ V(x')- V(y)- V(y')

=> V~(a- 1) + O - V~(a) - 1/3

= 4/3 - 1/3 - 1/3 = 2/3.

N o w the savings account a rgument , using Fact 2, gives

0__< V(Tk) < k - (2/3) B(k)
hence

B(k) <= 3 k/2.

This completes the p roof of T h e o r e m 1.

Remarks. l) No te that there is a nonl inear lower bound on B(k) for o rd inary B-
trees (i.e., b=2a-1). Figure 3 shows an example.

However , for o rd inary B-trees a similar theorem holds for sequences of
insert ions only. Define

V~(j) = VR(j) = max (0, j - [b/2])

and use the savings account a rgument . This fact is ment ioned in [2].

www.manaraa.com

166 s. Huddleston and K. Mehlhorn

2) For (a, 2a)-trees, the theorem depends on the fact that the sharing
threshold t is 0 in Algorithm 2. [-8] shows a nonlinear lower bound on B(k) in
any (a, 2a)-tree algorithm with t = 1, even if it makes clever nondeterministic
choices of which brother to use with underflow and which side to place the
larger node after splitting. It is also shown that for b>2a, the natural node
splitting strategy (as evenly as possible) guarantees a linear bound on B(k) for
any (a, b)-tree algorithm, independent of t.

Theorem 1 shows that on the average the cost of rebalancing is 0(1) if we
start with an initially empty tree.

3. Refined Sequence of Operation Analysis

In this section we extend the results of the previous section in two respects. We
first compute the distribution of the rebalancing operations on the different
levels of the tree and then we extend our analysis to arbitrary initial trees. The
second extension will lead to a new data structure in Sect. 4 and to efficient
algorithms for several set manipulation problems in Sect. 5. The first extension
is motivated by the use of trees in concurrent environments and multidimen-
sional applications. [3] provides us with an elegant method for using trees in a
parallel environment. In the analysis of their method Bayer and Schkolnik use
the fact that the probability that k splits have to be done after an insertion is
exponentially decreasing in k. Our results show that this assumption is justified
even in the presence of insertions and deletions. Willard [14] and others use
multidimensional trees in the following sense. Trees of dimension 0 are or-
dinary trees. A tree of dimension k is an ordinary tree T plus a k - 1 dimen-
sional tree associated with every node of T. Typically in these applications the
cost of a rebalancing operation on a node of height h grows exponentially in h.
It is therefore important to know that rebalancing operations high up in the
tree occur very infrequently.

3.1. On the Distribution of Rebalancing Operations on the Levels of the Tree

We need some more notation. We say that a splitting (fusing, sharing) oper-
ation occurs at height h, if node v which is to be split (or fused with its brother
y, or share sons with its brother y) has height h; the height of a leaf being O. A
splitting (fusing) operation at height h expands (shrinks) a node at height h + 1.
An insertion (deletion) of a leaf expands (shrinks) a node at height 1.

For any tree T and savings account F, we define the level h account Vh(T)
as the sum of V(x) over level h nodes x of T.

A similar but weaker result than Theorem 2(c) is also shown in [10].

Theorem 2 (also with Ch. Backes). Let b >1 2a. Consider an arbitrary sequence of k
intermixed insertions and deletions into an initially empty (a,b)-tree. Let Bh(k) be
the total number of rebalancing operations at level h during this sequence. Let m
= [b/2]. Let p' = (b + 1) / 2 - a be the "fractional hysteresis" of (a, b)-trees, and p
= [p'] = m - a be the hysteresis. Then

www.manaraa.com

Sorted List Data Structure 167

a) Bh(k) <= k/(p + 1) h using Algorithm 1,
b) Bh(k) <= k(3/5) h - 1 in (2,4)-trees,
c) Bh(k) <= k/c h - 1 using Algorithm 2 when b > 4,

where c = min(2p' + 1, m - 1) __> 2.

Proof We first examine how insertions and deletions propagate changes to
higher levels of the tree.

Fact 1. Let Wn(k) be the number of level h node expansions and shrinkings
that occur during k insertions and deletions to an initially empty tree. Let
SFh(k) be the number of level h node splittings and fusings during the same
interval. Then

a) Wl(k)=k,
b) W h+ ~(k)=SFh(k).

Proof a) Immediate from the definition.

b) Node splitting or fusing at some level h expands or shrinks exactly one
node in the tree, at level h+ 1; this might occur after creating or before
deleting a 1-ary root. Adding or pruning a leaf does not affect Wh+l(k) for
h > 1, and node sharing never expands or shrinks nodes (shifting sons is
considered a different operation).

Now let accounts V be defined for Algorithms 1 and 2 as in Theorem 1.
We next examine how V h for Algorithm 1 is affected by all possible changes in
the set of nodes or node arities at level h.

Fact 2. Using Algorithm 1, let tree T' be obtained from T by one of the
following operations at level h. If the operation is

a) creating or deleting a root, then Vh(T')= Vh(T),
b) expanding or shrinking a node, then Vh(T')< Vh(T)+ 1,
c) a rebalancing operation, then Vh(T ') < Vh(T) - (p + 1).

Proof a) The root must be 1-ary when it is created or deleted, and V~(1)=0 for
any savings account. Note that a) is always followed or preceded by b) as part
of a node splittings or fusing operation at level h - 1 > 1.

b) Immediate from property P2 of savings accounts.
c) This has already been proved in Theorem 1. Note that, had we defined

Algorithm 1 to shift s '= [p /2] sons (instead of [(p+ 1)/2]), Theorem 1 would
still hold, but not part a) of Theorem 2.

Fact 3. a) Bh(k) <= Wh(k)/(p + 1) using Algorithm 1,
b) Bh(k)< Wh(k) using Algorithm 2.

Proof. a) We use the savings account argument, restricted to nodes at level h.
Let T O be the initial empty tree and T k be the tree after the k'th insertion or
deletion. Then by Fact 2 we have

0 < vh(Tk) <= Vh(To) + Wh(k) - (p + 1) Bn(k) = Wh(k) - (p + 1) Bh(k)

for all h__> 1, hence

Bh(k) <= Wh(k)/(p + 1)

www.manaraa.com

168 S. Huddleston and K. Mehlhorn

b) Each insertion or deletion makes at most one rebalancing operation at
level h, and only after expanding or shrinking a node at level h. Hence

Bn(k) < Wh(k).

Fact 4.
a) SFh(k) <= Wh(k)/(p + 1) using Algorithm 1
b) SFh(k) ~ (3/5) Wh(k) in (2, 4)-trees
C) SFh(k) <= Wh(k)/c using Algorithm 2 when b > 4,

where c is as defined in the theorem.

Proof a) Immediate from Fact 3 and SFh(k)<=Bh(k).

b) We saw in Theorem 1 (for Algorithm 2) that if tree T' is obtained from
T by a node splitting or fusing at level h, then Vh(T ') ~ Vh(T) - 5/3. For tree T'
obtained by node sharing at level h, we only need Vh(T')~ Vh(T), although a
stronger bounds holds. Now, the savings account argument applied to level h
node splittings and fusings gives

0 < vh(Tk) < Vh(To) + Wh(k) -- (5/3) SFh(k)

hence
SFh(k) <(3/5) Wh(k).

c) As in part b), we use the savings account argument applied to node
splittings and fusings. But here the account defined in Theorem 1 for Algo-
rithm 2 does not suffice. We define another savings account V as follows. Let
p"= rpq.
Case 1. If 3p" < b - a , define Vby

VR(j) = max(0, j - (b - 2p")),

VI(j) = max((a + p") - j , VR(j)).

Case 2. If 3 p " > b - a , define Vby

V~(j) -- ~ - ml + 1,

VR(j)=max(O,j--m + 1).

The savings account argument requires the following fact.

Fact 5. Let tree T' be obtained from T by rebalancing operation at level h,
using Algorithm 2 with b > 4. Then with V defined as above, if T' is obtained
by

i) sharing, then Vh(T ') <= Vh(T),
ii) splitting or fusing, then Vh(T ') < Vh(T) -c .

Proof i) Let node x borrow one son from x', creating nodes y and y'. Then in
both cases, V(x) - V(y) = V1(a - 1) - Vi(a) = 1 and V(x') - V(y') > - 1. Thus,

Vh(T)- Vh(T ') = (V (x) - V(y))+ (V (x ') - V(y'))

> 1 + (- 1) = 0 .

www.manaraa.com

Sorted List Data Structure 169

ii) Fo r splitting, let node x be split into nodes x' and x". For fusing, let
node x be fused with x' to form node y. We have

V h (T) - Vh(T ') = V(x) - l/(x') - V(x") for splitting

where V(x)= V~(b+ 1)= V1(b+ 1), ~ { I , R } , and

vh(r) -- Vh(T ') = V(x) + V(x') - V(y) for fusing,

where V(y) = V~(p(y)) < V~(p(y)), a t {I, R}.

Case I. 3p" <=b-a.

Case 1.1. b is odd. Then p" =p '=p.

Splitting. Note that b + 1 = 2 m and a + p " = m . We have

vh(r) - vh(r ') = V~(b + 1) - 2 Vx(a + p")

= (2 p " + l) - O = 2 p ' + l > c .

Fusing. Note that 2 a - 1 = 2 m - 1 - 2 p = b - 2 p " . We have

V h (T) - Vh(T ') > V t (a - 1)+ V1(a) - V~(2a- 1)

= (p" + 1) + p ' - O = 2 p " + 1 = 2 p ' + 1 >c .

Case 1.2. b is even. Then p " = p ' + 1 / 2 = p + 1.

Splitting. Note that b + 1 = 2 m + l and a + p " = m + 1. We have

V h (T) - Vh(T ') = Vi(2m + 1) - V/(m + 1) - V1(m)

= Vi(b + 1) - V~(a + p") - V~(a + p) = (2p" + 1) - 0 - 1

= 2 p " = 2 p ' + l > c .

Fusing. Note that 2 a - 1 = 2 m - 2 p - 1 = b - 2 p ' = b - (2 p " - 1). We have

Vh(T) -- Vh(T ') > V1(a - 1) + Vl(a) - Vi(Za - 1)

= (p " + 1) + p " - 1 = 2 p " = 2 p ' + 1 >c .

Case 2. 3 p " > b - a .

Splitting. Let b ' = b + 1, so m = [b'/2J. Then

V h (T) - Vh(T ') = V~(b')- Vt(kb'/2])- V~([b'/2])

= (b ' - m + 1) - ([b ' / 2] - m + 1) - ([b ' / 2] - m + 1)

= m - l > = c .
Fusing.

vh(r) -- v h (r ') > V,(a - 1) + V~(a) - V~(2a - 1)

= V~(m - p - 1) + Vt(m - p) - Vt(Zm - (2p + 1))

= (p +2) + (p + 1) - (I m - (Z p + 1)l + 1)

= 2 p + 2 - 1 (2 p + 1) - ml.

www.manaraa.com

170 S. Huddleston and K. Mehlhorn

This last quantity is m + l when 2 p + l > m , and is > m - 1 if 2 p + l > m - 1 .
Now 3 p " > b - a gives, when b is odd,

3 p > (2 m - 1) - (m - p) , hence 2 p + l > m

and when b is even,

3(p+l)>2m-(m-p) , hence 2 p + l > m - 2 and 2 p + l > m - 1 .

Thus we have 2 p + l > m - 1 when 3p">b-a , and

Vh(T) - Vh(T ') __> 2p + 2 -- [(2p + 1) -- m[

>m--l>=c.

This completes the proof of Fact 5.
To complete the proof of Fact 4, part c), we use Fact 5 and the savings

account argument restricted to splittings and fusings. This follows part b) of
Fact 4 exactly; the details are left to the reader.

Now from Facts 1 and 4 and induction on h, we have

Wh(k) ~ k/(p + 1) h- 1 using Algorithm 1

Wh(k) ~= k(3/5)h- 1 in (2, 4)-trees

Wh(k) ~ k/c h- 1 using Algorithm 2 when b > 4

Combining these results with Fact 3 gives the theorem.

Remarks. 1) Note that Theorem 2 also holds for Algorithm 1 when p=0 . In
(a, 2a-1) - t rees we have Bh(k)<k, which is consistent with B(k)=O(klogk). In
(a, 2a)-trees, Algorithm 1 = Algorithm 2, but parts b) and c) give a better bound
than a).

2) Theorem 1 shows that Algorithm 1 is preferable to Algorithm 2 for
reducing total rebalancing cost when p > 1. Theorem 2 shows that Algorithm 2
is preferable for reducing propagation of rebalancing to higher levels of the
tree.

3) Bh(k) is the number of insertions and deletions which require rebalancing
up to height h or higher. Theorem 2 shows that this number is exponentially
decreasing with h.

We conclude from this last remark that the analysis in [3] can be used to
show that (a,b)-trees for b>=2a behave well in a parallel environment in the
presence of insertions and deletions.

3.2. Arbitrary Initial Tree

In this section we treat the case of an arbitrary initial tree.
Let T O be an arbitrary (a, b)-tree. Suppose now that we execute a sequence

of k insertions and deletions on To, using either Algorithm 1 or Algorithm 2,
and obtain tree T k. Let B(k) be the number of rebalancing operations that
occur during this sequence. Then we can derive a bound on B(k) using the
savings account argument as follows. Let N be the set of nodes in T o. Let
account V be as defined in Theorem 1, w be the minimum amount by which

www.manaraa.com

Sorted List Data Structure 171

each rebalancing operation decreases V, and let W= V~(b)
= max VI(j)> max VR(j). Then we have

a<=j<=b O<j<-_b

0 < V(Tk) < V(To) + k - w B(k)
hence

B(k) <_ k/w + V (To)/W < k/w +(W/w) INI.

However, the term (W/w)INI in this bound is much larger than necessary when
k ~ INI, since only a small subset of nodes in N can be affected by k insertions
or deletions. It is also possible to significantly decrease the factor W/w for
Algorithm 1 when 2a is close to b.

In Theorem 3 we give a bound on rebalancing cost starting from an
arbitrary tree that answers these shortcomings. Let N ~ be the set of nodes in T O
that are affected by rebalancing during k insertions or deletions, and let N k be
the similar set of nodes in T k. Then

V(To)- V(Tk)= V(N ~ - V(Nk) <(W/w) IN~

We actually relate N ~ to the set A ~ of ancestors in T O of leaf positions at
which the k insertions and deletions occur. It is intuitively obvious that only
nodes in A ~ and their successors in subsequent trees (possibly after rebalanc-
ing) can overflow or underflow and initiate a rebalancing operation. However,
N ~ can contain nodes not in A ~ which participate in fusing or sharing.

The proof uses the savings account argument, restricted to the set A ~ and
its successors in subsequent trees. The fact that sometimes N~ ~ requires
using different accounts V (with smaller w) than in Theorem 1, but also reduces
W/w to 1 for Algorithm 1. We derive a bound on]A~ in Theorem 4.

Theorem 3. Let b>2a. Consider any sequence of k intermixed insertions and
deletions into an arbitrary initial tree T o. Let B(k) be the total number of
rebalancing operations during this sequence. Let p~ ,Pk be the set of leaf
positions in T O at which leaves are eventually inserted or deleted in constructing
Tk, ordered Pl <P: <.. . <Pk, and let A be the number of ancestors in T O of these
leaf positions. Then

a) B(k)<2k/p+ A using Algorithm 1 when b> 2a
where p = [b / 2] - a is the hysteresis of (a, b)-trees.

b) B(k)<2k + 2A in (a, 2a)-trees,
c) B(k) < 2k + A using Algorithm 2 when b > 2a.

Proof (all parts). We first describe a process for marking nodes during the
rebalancing process, and labelling the leaves of the trees constructed with
positions of leaves in T o. The process also (conceptually) keeps a copy of To,
and marks certain nodes in T o. For any tree T' in the sequence of partially
rebalanced trees constructed during k insertions and deletions, let M T, denote
the set of marked nodes in T', and M ~ denote the set of nodes in T O that have
been marked while constructing T'.

Initially, we have T'= To, M T,=M ~ and all leaves in T' are labelled
with their position in To, numbered 0 to [T ' I -1 . Let U T, be the set of
unmarked nodes in T', and U ~ be the set of nodes in T O but not in M~

www.manaraa.com

172 S. Huddleston and K. Mehlhorn

The following fact is certainly true initially, and is easily seen to remain
true after each step in insertion or deletion.

Fact 1. If node x is in UT,, then the subtree rooted at x is unchanged from T O
to T', i.e.,

a) x has not participated in any rebalancing operation,
b) no leaf has been added or pruned from any descendant of x.

The marking process now proceeds as follows, where tree T' is obtained from
T by one step in insertion or deletion.

Case 1. A rebalancing operation: Mark all nodes in T' that participated in
rebalancing, and leave M ~ = M ~

Case 2. The f t h adding or pruning of a leaf.

a) The leaf position pj in T O corresponding to the f t h insertion or deletion
is determined as follows. If leaf l~ is pruned, let pj be its label. If leaf l~ is
added, let pj be the label of an adjacent brother leaf in T' (or p j=0 if there is
no brother), and label l~ with pj. If there are two adjacent brothers of lj with
distinct fathers, choose pj to be the label of the brother with the same father as l~.

b) Mark all ancestors Aj in T' of leaf I i and all ancestors A ~ in T O of leaf pj.
In Case 2(b), let UA~ and UA ~ be the sets of newly marked nodes

(unmarked ancestors) in T' and T o. Thus

UA~176 ~ and UAj=(U T in T')nAj.

Also let UA~ be the set (UA~ in T).
Note that M~ is the disjoint union of UA ~ 1 <j<k, which is just the set

of ancestors in T O of the leaves p~ defined in Case 2(a).
Next we examine the savings account argument restricted to the sets MT,.

We consider adding or pruning a leaf in Fact 2, and rebalancing operations in
Fact 3.

Fact 2. Let tree T' be generated from T by the f t h adding or pruning of a leaf.
Let V be any savings account. Then

a) V(MT,) ~ V(MT)+ V(UA T) + 1,
b) V(UA~)< V(UA~

Proof a) The set (M T, in T) is just MTU UA T, and adding or pruning a leaf
expands or shrinks one node in this set by 1.

b) Let UA' be the set of nodes (UA T in To). Then UA'~_UA ~ by Fact 1,
and nodes in UA' have not changed in constructing T. Thus V(UA T)
=V(UA')<=V(UA~ Note that U A ~ ' consists only of nodes in T o that
participate in fusing or sharing during the construction of T from T o.

We use the following savings accounts for parts a) through c) of the
Theorem.

a) For Algorithm 1 when b>2a (hence p=[b/2]-a>O),

VR(j) = max(0, j - (b - [p/2]),

VI(j) = max((a + [p/2]) - j , VR(j)).

www.manaraa.com

Sorted List Data Structure

b) For (a, 2a)-trees,

VR(j) = max (0, j -- (2 a -- 1)),

VI(j) = m a x ((a + 1/2) - j , VR(j)).

173

c) Fo r Algor i thm 2 when b > 2a,

VRU) -- max (0, j - (b - 1/2)),

FI(j) = max((a + 1/2) - j , VR(j)).

Fact 3. In cases a) through c) of the theorem, let tree T ' be obta ined f rom T by
a rebalancing operat ion. Then

V(MT,) <_ V(MT) - w

where w = [p/2] for par t a) and w = 1/2 for parts b) and c).

Proof Let S and S' be the sets of nodes in T and T ' that par t ic ipate in
rebalancing. Case 1 of the mark ing process guarantees that S'~_MT,. Case 2
guarantees that an unba lanced node and its father (if present) are in M T. Thus
for node splitting, S~MT, and V(MT)-V(MT,)= V(S)-V(S'). We leave it to
the reader to show the result for splitting, following T h e o r e m 1.

For fusing and sharing, let node x either fuse with x ' (forming node y) or
bo r row f rom x' (resulting in nodes y and y'). Then x ' m a y or m a y not be in
M T. But, letting M " = M r - { x ' }, we need only show

V(MT,) < V(M") - w

since V(M") < V(MT).

Fusing. We have V (x) = l + w in all cases. In cases b) and c) we have V(y)
= V~(2a-1)=0, a~{I,R}. In case a), let m=[b/2]. Then

p(x') < m + [(p + 1)/2] - 1 = m + [p/2],
hence

p(y) __< (m - p - i) + (m + Lp/2J) = (2 m - 1) - [p/2] _-< b - [p/2],

so V(y)= 0 also in case a). Thus

V(M") - V(MT,) > V(x) -- V(y) - 1 = w.

Sharing. a) We have V (x) = l + [p / 2] before sharing, V (y ') = 0 and V(y)=V(x)
- [(p + 1)/2] =< 1 after sharing. Then

V(M") - V(MT,)= V (x) - V (y) - V(y')

>(1 + [p / 2]) - 1 - 0 = [p/2].

b,c) We have V(x)=3/2, V(y)=l /2 , and V(y')<l/2, similar to Fac t 2 in
T h e o r e m i. Then

V (M ") - V(MT,) = V (x) - V (y) - V(y')

3/2 - 1/2 - 1/2 = 1/2.

www.manaraa.com

174 S. Huddleston and K. Mehlhorn

Now let w be as defined in Fact 3. Then by induction on the steps of insertion
and deletion, Facts 2(a) and 3 give

V(Mzk)<V(O)+ ~ (V(UAT)+ 1)-wB(k).
l<-_j<-k

Let A-M~ rk, the set of ancestors in T o of leaves p j, l<_j<k. We have
V(UA~)< V(UA ~ by Fact 2(b), and ~ V(UA~ V(A). Thus

l<-_j<=k

0 < V(MT~) < k + V(A)- wB(k)
hence

B(k) < k/w + v(a)/w

by the savings account argument.
Now let W= max V1(i) > max VR(i). Then V(A) <= W IAI.

a<=i<=b O<__i<b
This shows

B(k) < k/w + (W/w) IAI
where

a) W/w= [p/2]/[p/2] = 1 for Algorithm 1 when b >2a ,
b) W/w = V(2a)/w = 1/(1/2)= 2 for (a, 2a)-trees,
c) W/w = (1/2)/(1/2) = 1 for Algorithm 2 when b > 2a.

This completes the proof of Theorem 3.
We now derive a bound on the number of ancestors of a set of leaves,

given their positions. We use the name (a, oo)-tree for any tree T where each
interior node except the root has at least a sons, and the root has at least
min(2, [TI) sons.

Theorem 4. Let T be an (a,~)-tree with N leaves. Let l <__pl ~P2~. . . <=p,<N.
Let m be the total number of ancestors of the leaves in positions Pi, 1 <_ i <_ r. Then

m=<3r+2 (f log .N] + i [l~ 1)J).
i = 2

Proof A proof of this fact for the case a = 2 can be found in [5] (Lemma 7).
We give a self-contained proof here.

For every node v label the outgoing edges with 0 , p(v)-1 from left to
right

O ~ p (v) - 1

Then a path from the root to a node corresponds to a word over alphabet
{0, 1,2, ...} in a natural way.

Let A t be the number of edges labelled 0 on the path from the root to leaf
p~, 1 <i<r. Since an (a, c~)-tree of height h has at least 2 . a h-1 leaves, we
conclude 0 < A i < 1 + [log, N/2J. Furthermore, let l~ be the number of interior
nodes on the path from leaf pi to the root which are not on the path from leaf

www.manaraa.com

Sorted List Data Structure 175

Pi-1 to the root. Then

m < i + Llog~ N/2J + ~ I v
i = 2

Consider any i > 2 . Let v be the lowest c o m m o n node on the paths from leaves
Pi- t and pi to the root. Then edge k~ is taken out of v on the path to p~_ 1 and
edge kz>k ~ is taken on the path to Pv

Note that the path from v to leaf Pi-1 as well as to leaf pi consists of
l~ + 1 edges.

Claim. A~ > Ai_ 1 + Iz - 2 [log~(p~ - pz_ 1 + 1)] - 3.

Proof The paths f rom p~_ t and p~ to the root differ only below node v. Let s
be minimal such that

a) the path from v to Pi-~ has the form k I e / /w i th I//I = s and ~ contains no 0.

b) the path from v to p~ has the form k z 01"1 7 for some 7 with 171 =s . Note
that either/3 starts with a 0 or 7 starts with a non-zero and that Ic~l + I//I = li.

Then

V

/

\

Pi-1 Pi

Ai=Ai-1+if k I=0 then - 1

+ number of zeroes in 7

- n u m b e r of zeroes in/~

> A i - 1 - 1 + (l i - s) + 0 - s .

It remains to show that s < 1 + [lOga(pl--Pl-1 + 1)J.
This is certainly the case if s = 0 . Suppose now that s > 0 .

www.manaraa.com

176 S. Huddleston and K. Mehlhorn

We noted above that either fl starts with a zero or y starts with a non-zero.
In the first case consider node w which is reached from v via kt ct 1, in the
second case node w which is reached from v via k 2 0 I'l 0. All leaf descendants
of w lie properly between p~_x and Pv Furthermore, w has height s - 1 and
hence at least a s- ~ leaf descendants. This proves

and hence
a ~- 1 < P i - Pi- 1 -- 1

s~< 1 + [log,(p~-p,_ ~ - 1)J

=< 1 + [l og , (p i -P i - 1 d'- 1)J.

Using our claim repeatedly, we obtain

Ar>=A 1+ ~ I , - 2 i l~ +1)
i = 2 i = 2

- 3 (r - 1).

Since A t < 1 +logaLN/2] and A1 >0, this proves

and hence

~ l ~ =< 3 r - 3 + 1 + Llog a N/2J
i = 2

+ 2 ~ Llog,(p~-p~_ 1 + 1)J
i = 2

m < 3 r - 1 + 2 [log, N/2] + 2 i [_log,(p~ - p~_ 1 + 1)J.
i = 2

This completes the proof of Theorem 4.

4. A Representation for Linear Lists with Fingers

In this section we use (a,b)-trees in order to represent linear lists. This section
follows [5] very closely.

Let L be a sorted sequence of n items drawn from some linearly ordered
universe U. Let T be an (a, b)-tree with n leaves. We say that T represents L if

1) the elements of L are stored in the n leaves of T in increasing order from
left to right.

2) in each interior node v of T, p(v) -1 keys (= elements of U) are stored. If
k is the i-th key in node v then the elements in all leaves in the (i -1) - th
subtree (i-th subtree) of v are less than or equal (greater than) k.

Figure 4 gives an example.
A finger into list L is a pointer to an element of L. Fingers may be used to

indicate areas of high activity in list L. (a, b)-trees as they stand do not support
efficient search in the vicinity of fingers. This is due to the fact that neighbor-
ing leaves may be connected only by a very long path. Therefore, we introduce
level-linked (a, b)-trees.

www.manaraa.com

Sorted List Data Structure 177

In level linked (a,b)-trees all tree edges are made traversible in both
directions (i.e., there are also pointers from sons to fathers); in addition each
node has pointers to the two neighboring nodes on the same level. Figure 5
gives an example.

A finger into a level-linked (a, b)-tree is a pointer to a leaf. Level-linked
(a, b)-trees allow very fast searching in the vicinity of fingers.

Lemma 1. Let p be a finger in a level-linked (a, b)-tree T. A search for a key k
which is d keys away from p takes time (9(1 +logd).

Proof. We first check whether k is to the left or right of p, say k is to the right
of p. Then we walk towards the root, say we reached node v. We check
whether k is a descendant of v or v's right neighbor on the same level. If not,
then we proceed to v's father. Otherwise we turn around and search for k in
the ordinary way.

Suppose that we turn around at node w of height h. Let u be that son of w
which is on the path to the finger p. Then all descendants of u's right neighbor
lie between the finger p and key k. Hence, the distance d is at least 2 h-1 . The
time bound follows.

Fig. 4. A (2,4)-tree for list 2, 4, 7, 10, 11, 15, 17, 21. The universe is the set of natural numbers.

(f - 11

Fig. 5. A (2,4)-level linked tree for list 2, 4, 7, 10, 11, 15, 17, 21, 22, 24

www.manaraa.com

178 S. Huddleston and K. Mehlhorn

Lemma 2. A new leaf can be inserted in a given position of a level-linked (a, b)-
tree in time O(1 +s), where s is the number of splittings caused by the insertion.

Proof Let w be the leaf to be split, let cont(w) be the element stored in w, let x
be the element to be inserted and let v be the father of w. We give v an
additional leaf son immediately to the right of w, say w' and store
min(x, cont(w)) in w, max(x, cont(w)) in w' and we make min(x, cont(w)) the key
between the pointers to w and w' in w Next consider a split. If v is to be split it
is easy to update the links in constant time. To maintain the key organization
we place the left [(b + 1) /2J- 1 (right [-(b + 1) /2] - 1) keys of v into the two new
nodes produced by the split, and we move the remaining key into the father of v.

Lemma 3. A leaf can be deleted from a level-linked (a,b)-tree in time O(1 +f) ,
where f is the number of node fusings caused by the deletion.

Proof Suppose that leaf w has to be deleted. This is achieved by deleting leaf
w, the pointer to w in the father of w and one of the keys adjacent to the
pointer (i.e., if w is the i-th son of v then we remove either the (i - 1)-th key or
the i-th key of v). The details of sharing or fusing are left to the reader.

Lemma 4. Creation or removal of a finger in a level-linked (a,b)-tree takes time
0(1).

Proof. Obvious.

Now we apply our result of Sect. II and show that even though the search
time in level linked (a, b)-trees can be greatly reduced by maintaining fingers, it
still dominates the order of total execution time when b__>2a. But note that
some rebalancing operations are very expensive in level-linked trees (Remark
3, following). Thus, rebalancing cost can exceed total search cost by a large
constant factor if all searches are for keys near fingers.

Theorem 5. Let b >= 2a. Then any sequence of searches, finger creations, finger
removals, insertions and deletions starting with an empty list takes time

0 (total cost of searches)

if a level-linked (a, b)-tree is used to represent the list.

Proof Let n be the length of the sequence. Then the total cost for the searches
is ~2(n) by Lemma 1. On the other hand the total cost for the finger creations
and removals is O(n) by Lemma 4 and the total cost of insertions and deletions
is O(n) by Lemma 2 and 3 and Theorem 1.

Theorem 6. Let b>=2a. Let L be a sorted list of n elements represented as a
level-linked (a,b)-tree with one finger established. Then in any sequence of
searches, finger creations, insertions, and deletions, the total cost of the sequence
is

O(log n + total cost of searches).

Proof Let S be any sequence of k searches, finger creations, insertions and
deletions containing exactly s insertions and d deletions. Let T O and T k by the

www.manaraa.com

Sorted List Data Structure 179

(a, b)-trees which represent list L before and after S is performed, respectively.
Assume that deleted elements (conceptually) remain in T k as phantoms (cf. Fig.
6), which are invisible for purposes of searching, determining arities of nodes,
or rebalancing. Thus, T k has n + s (real or phantom) leaves, and the positions of
all operations in S correspond to leaves in T k. Assign a label l(p) in the range
0 , . . . , n -1 to each leaf p in Tk, representing a leaf position in To, as in the
proof of Theorem 3.

We now proceed precisely as in the proof of Theorem 4 in [5]. The details
are left to the reader.

Remarks. 1) Theorem 6 is not true for ordinary B-trees, b = 2 a - 1 . In that case
a related result was proven in [5]; they show that the theorem is true if the
sequence of operations either does not contain insertions or does not contain
deletions, or if insertions and deletions do not interact too much.

2) [7] describes a data structure which achieves a similar time bound in the
worst case, i.e., for every single insertion and deletion the cost is bounded by
the preceeding search; we claim this only for the average over a sequence.
However, they have to pay a price for it: fingers creation are much harder and
the constants in the bounds for the run times are much larger.

i insertion of new
4th leaf and splitting

Fig. 6. A (2, 4)-tree with phantoms

deletion ~ ~
of 4th leaf

and sharing

a phantom

deletion of third
~ leaf and fusing

insertion / \
o f a n e w t h i r d l e a ~ ~ ~

phantoms

www.manaraa.com

180 s. Huddleston and K. Mehlhorn

3) It was remarked by one of the referees that in conventional applications
(trees of high arity, stored on secondary storage) the constants in the 0-
expressions in Lemmas 2 and 3 and hence in Theorem 6 are rather large. Note
that splitting (or fusing) requires the change of about b/2 (a resp.) son-to-father
pointers. In the applications mentioned above, this would require fetching
about that number of nodes from secondary memory.

We will next describe a data structure, (a,b)-trees with fingers, which
overcomes this difficulty at the cost of increased search times and yet supports
most applications described in Sect. 5.

In an (a, b)-tree with fingers each node has the ability to store a pointer to
its father. However, only nodes on a finger path, i.e., a path from one of the
fingers to the root, make use of that ability and actually contain a pointer to
their father. Also each node on a finger path knows which of his sons also are
on a finger path. For all other nodes the son-to-father pointers contain trash.
Also there are no side-links. We remark that in some applications, in particu-
lar, if there will be only one finger, it is preferable to store the finger paths
separate from the tree, say in a linked list or pushdown store.

A search in an (a, b)-tree with fingers proceeds as follows. Say we start at
finger p and search for key k. We first check whether k is to the right or left of
p: say k is to the right of p. Then we walk to the root until we reach a node v
such that k is a descendant of v. We turn around at v and search for k in the
ordinary way. Also on the way down from v we set the son-to-father pointers
of the descendants of v to their correct value. Once we reach the leaf level, we
can establish a finger at k at the cost of O(1), or insert/delete k at the cost O(s),
where s is the number of splittings/fusings caused by the insertion/deletion.

This shows that Lemmas 2 to 4 stay true, if level-linked (a,b)-tree is
replaced by (a,b)-tree with fingers. Note however, that only the son-to-father
links on the finger paths need to be maintained and hence the cost of a
splitting/fusing will be generally lower in (a, b)-trees with fingers than in level-
linked (a, b)-trees.

However, there is a price which we have to pay. Lemma 1 does not stay
true. Rather the cost of a search is the height of node v defined above.

Lemma 1'. Let p be a finger in an (a, b)-tree with fingers. Let k be a key which
is d keys away from p and let h be the height of the lowest common ancestor of p
and k. Then the cost of a search for k starting at p is

O(1 + h)= ~2(1 + log d).

Proof By preceding discussion.

Lemma 1' tells us that a search in an (a, b)-tree with fingers is never cheaper
than the corresponding search in a level-linked (a, b)-tree. Hence theorems 5
and 6 stay true if we replace level-linked (a, b)-trees by (a, b)-trees with fingers.

Theorem 6'. Same as theorem 6 but level-linked (a,b)-tree replaced by (a,b)-tree
with fingers.

www.manaraa.com

Sorted List Data Structure 181

5. Applications of Level-linked (a, b)-Trees

In general, we advise to use level-linked (a,b)-trees (b>2a) whenever there are
(maybe time-varying) areas of high activity. The finger will make the searches
very fast, and finger creations, insertions and deletions take constant time on
the average. This situation occurs quite frequently in the implementation of
event lists.

More specifically, level-linked (a,b)-trees permit the optimal realization of
many set operations.

Theorem 7. Let A and B be sets represented as level-linked (a, b)-trees, b > 2a.

a) Insert(A,x), Delete(A,x), Search(A,x), Concatenate(A,B) and Split(A,x)
can be done in logarithmic time. (Here Conca tena te (A ,B)=AuB /f
max A < min B and undefined otherwise and Split(A, x) = (A 1, A 2) where A 1 = {a;
a~A and a<x} and A z = { a ; a~A and a> x}.

b) Let n=max(IAI, IBI) and m=min(IAI, IBD.

Then A u B, A GB, A riB, A \ B can be constructed in time O(1og(n~m)).

Proof a) The algorithms are the same as for 2-3 trees. We refer the reader to
[11] for details.

b) We first show how to perform AGB.

Assume w.l.o.g. [AI > [BI. The algorithm is as follows:

a) establish a finger at the first element of A

b) while B not exhausted
do
(b.1) take the next element, say x, of B and search for it in A starting at

the finger
(b.2) insert or delete x from A, whatever is appropriate
(b.3) establish a finger at the position of x in A and destroy the old

finger
od.

Let p~,. . . , Pro, m = IB[, be the positions of the elements of B in the set A u B, let
P0 = 1. Then the above program takes time ([AI =n)

r a - -1

z
i = O

by Theorem 6 and the observation that total search time is bounded by

m - - 1

l~ 1 - P i + I).
i = 1

This expression is maximized for Pi+l -P i=(n+m) /m for all i, and then has
value O(log(n + m) + m log((n + m)/m)) = O(m log((n + m)/m)) = O(1og(n~m)).

In the case of A uB, we only do insertions in line (b.2). In the case of A c~B,
we collect the elements of A n B in line (b.2) (there are at most m of them) and
construct a level-linked (a, b)-tree for them afterwards.

www.manaraa.com

182 S. Huddleston and K. Mehlhorn

Finally, we have to consider A \ B . If IAl~lBI, then we use the p r o g r a m
above. If [AI < IB[then we scan through A linearly, search for the elements of A
in B as described above (roles of A and B reversed) and delete the appropr ia te
elements f rom A. Apparent ly , the same t ime bound holds.

n - t - m Note that there are (m) possibilities for B as a subset of A w B . Hence
log(n~ m) is also a lower bound on the complexi ty of union and symmetr ic
difference.

Next we prove the corresponding theorem for (a, b)-trees with fingers.

Theorem 7'. Same as Theorem 7, but level-linked (a, b)-tree replaced by (a, b)-tree
with fingers.

Proof Part a) is obvious. For par t b) we use the same a lgor i thms as in the
p roof of T h e o r e m 7. Note that the cost of establishing a finger at the first
e lement of A is O(log n), since we have to traverse the left spine of the tree for
A in order to establish the son- to-fa ther pointers at the finger path. F r o m
T h e o r e m 6' we infer that the cost of the p r o g r a m is bounded by

O(log n + total cost of the searches).

It remains to derive a bound on the total cost of the searches. Whilst this task
was trivial in the case of level-linked trees (using L e m m a 1), it is non-tr ivial in
the case of (a, b)-trees with fingers (using L e m m a 1'). We will establish such a
bound using Theo rem 4. (Note that T h e o r e m 4 gives a bound on the sum of
the heights of the lowest c o m m o n ancestors (1.c.a.) of posi t ions Pi-1 and pi,
1 <_i<_r.) Before we can apply T h e o r e m 4 we need a l e m m a abou t the effect of
insert ions/delet ions on the height of 1.c.a.'s.

Lemma 5. Let T be an (a, b)-tree, b > 2 a - 1 . Let x and y be two leaves of T and
let v be the l.c.a, of x and y. Let z be a leaf different from x and y

a) let v' be the l.c.a, of x and y after the deletion of leaf z. Then
height(v') <__height(v) + 1

I f height(v') = height(v) + 1 then z is a descendant of v' but not a descendant of v.
I f z is a descendant of v then height(v')__< height(v).

b) Let v' be the l.c.a, of x and y after splitting leaf z. Then
height(v') > height(v).

Proof a) A delet ion of a leaf is followed by a sequence of fusings followed by
at mos t one sharing. A fusing combines two nodes and can therefore never
increase the height of the 1.c.a. of x and y. Next consider the case of a sharing,
say node u takes away some son f rom node w. Then z was a descendant of u.
Also if either u and w are bo th descendants of v or if neither of them is, then v
does not lose descendants and hence v is still an ances tor of x and y after the
sharing. This shows height(v')<=height(v) in this case. This leaves the case that
exactly one of the nodes u and w is a descendant of v. Since u and w are
brothers , this can only be the case if either u or w is equal to v and the other is
a b ro ther of v. If u is equal to v, then v stays an ancestor and hence
height (v') __< height(v).

www.manaraa.com

Sorted List Data Structure 183

If w is equal to v then either v stays ancestor of x and y or v's father v'
becomes the 1.c.a. of x and y. In the latter case z is a descendant of v' but not
of v. This proves the lemma.

b) A split can never decrease the height of a 1.c.a.
Next we will use Lemma 5 in order to show that the total cost of the

searches is maximal if our algorithm has to compute A w B , i.e., interspersed
deletions can only decrease search times. In the case of A wB, Theorem 4 gives
us a bound on total search time.

Let B = { x I ,x,,}, x l < x z < . . . < x m. Our algorithm for computing A O B
(A w B ) processes the x's in increasing order. When x i is processed, we have
processed x l , . . . ,x i_ l already, a finger p at the position of x i_ 1 is established
and we search for xi starting at that finger. Let hi(i) be the height of the lowest
common ancestor of x~ and x~_~ (more precisely, of the leaves where the
searches for x~_ 1 and x~ are going to end) after processing x~ , xj. If xj is in-
serted into A by our algorithm then hj(i)>h~_ ~(i). If xj is deleted from A by our
algorithm, then hj(i)<hj_ 1(i)+ 1 by part a) of Lemma 5. Furthermore, if hi(i)
=h j_~(i)+ l , then xj was a descendant of the new 1.c.a. of xi_l and xi and
hence xj+~ ,x~_ 2 are descendants of that new 1.c.a. This shows that there is
at most one key among x~,. . . ,x~_ 2 such that its deletion increases the height
of the lowest common ancestor of x~_ ~ and x~. This observation together with
the fact that insertions never decrease the height of 1.c.a.'s shows that the cost
of the search for x~ in our algorithm, i.e., the height of the 1.c.a. of the finger p
and x~, is bounded by 1 + the height of the 1.c.a. of xi_~ and x~ in the tree
constructed for A w B by our algorithm.

We are now in a position to use Theorem 4 and conclude from it that the
total cost of the searches is

/ m - 1 \

o / l o g / . + mt + Z logl, +, - + 1))
\ i = O /

where the p~'s are defined as in the proof of Theorem 7. Hence the total
running time of our algorithm is

m - - 1

i = 0

by the argument in the proof of Theorem 7.
We conclude this section with the remark that the very frequent operation

of updating a master file against a file of updates is subsumed in Theorems 7
and 7' and hence level-linked (a,b)-trees, (a,b)-trees with fingers support op-
timal update.

6. Conclusion

We carried out a detailed sequence of operations analysis of (a,b)-trees in the
case b > 2 a . Our analysis shows that weak B-trees are superior to ordinary B-
trees (b = 2 a - 1) in two areas:

www.manaraa.com

184 S. Huddleston and K. Mehlhorn

a) Concurrent usage of trees: in weak B-trees rebalancing operations are
concentrated near the leaves even in the presence of insertions and deletions.
Thus, a high degree of parallelism is guaranteed.

b) Finger searches: level-linked weak B-trees support finger searches. Al-
though finger searches are usually more efficient (in particular if there is
locality of reference) than ordinary searches, total search time still dominates
the cost of sequences of operations. Level-linked weak B-trees allow the ef-
ficient realization of many set operations. In particular, they support optimal
update of a master file against a file of updates.

Acknowledgements: We wish to thank colleagues for raising questions that stimulated this research.
On October 29, 1979, Mehlhorn presented the results of [4] in Zfirich. Ed McCreight was in the
audience and asked, "Is a similar result true for 2-3 trees?" The counterexample shown in Fig. 3
was described. He then asked, "How about 10-50 trees?" Also in October 1979, Huddleston was
discussing some extensions of [4] with George Lueker, and George raised similar questions. We
also want to thank the referees for some very constructive remarks which led to the formulation of
Theorem 7'.

References

1. Bayer, R.: Symmetric Binary B-trees: Data structures and maintenance algorithms. Acta
Informat. 1, 290-306 (1972)

2. Bayer, R., McCreight, E.: Organization and maintenance of large ordered indizes. Acta Infor-
mat. 1, 173-189 (1972)

3. Bayer, R., Schkolnik, M.: Concurrency of operations on B-trees. Acta Informat. 9, 1-21 (1977)
4. Blum, N., Mehlhorn, K.: On the average number of rebalancing steps in weight-balanced trees.

Theor. Comput. Sci. 11, 303-320 (1980)
5. Brown, M.R., Tarjan, R.E.: Design and analysis of a data structure for representing sorted lists.

SIAM J. Comput. 9, 594-614 (1980)
6. Guibas, L.J., Sedgewick, R.: A dichromatic framework for balanced trees. Proc. 19th Annual

Symposium on Foundations of Computer Science. Ann Arbor: IEEE Computer Socienty, pp.
8-21 (1978)

7. Guibas, L., McCreight, E., Plass, M., Roberts, J.: A new representation for linear lists. 9th
ACM Symposium on Theory of Computing Boulder, pp. 49-60 (1977)

8. Huddleston, S.: Robust balancing in B-trees. PhD Dissertation, Computer Science Department,
University of Washington, Seattle, 1981

9. Huddleston, S., Mehlhorn, K.: Robust balancing in B-trees. 5th GI-Conference on Theoretical
Informatics 1981, Karlsruhe, LNCS 104, 234-244 (1981)

10. Maier, D., Salveter, S.C.: Hysterical B-trees. Technical Report 79/007, Dept. of Computer
Science, State University of New York at Stony Brook, November 1979

11. Mehlhorn, K.: Effiziente Algorithmen. Teubner-Verlag, Studienbiicher Informatik 1977
12. Mehlhorn, K.: Sorting presorted files. 4th GI-Conference on Theoretical Computer Science

1979, Aachen, Lecture Notes in Computer Science Vol. 67, pp. 199-212. Berlin-Heidelberg-New
York: Springer 1979

13. Mehlhorn, K.: Searching, sorting and information theory. MFCS 79, Lecture Notes in Com-
puter Science Vol. 74, pp. 131-145. Berlin-Heidelberg-New York: Springer 1981

14. Willard, D.E.: The super-B-tree algorithm. Harvard Aiken Computation Laboratory Report
TR-03-79

Received January 12, 1981

